RF Power amplifier based on the W6JL amp. The intent is to use readily available parts in the first instant. These may be swapped out depending on how well they perform.
See YouTube for videos. https://www.youtube.com/channel/UCSNPW3_gzuMJcX_ErBZTv2g
The original circuit (minus the biasing RFCs)
My version of the bias network
The final amp has used a BN-43-202 for T1 (8:4) and a BN-43-3312 for T2 (1:3). I also left off the RFCs for the YouTube video. Adding the RFCs would increase the gain a little.
Friday, 15 March 2019
Friday, 8 March 2019
Homebrew Panadapter
Homebrew panadapter using a Teensy 3.5.
Test Code
#include "SPI.h"
#include "ILI9341_t3.h"
#include <si5351.h> // Si5351Jason library
#include <Audio.h>
//const int myInput = AUDIO_INPUT_MIC;
const int myInput = AUDIO_INPUT_LINEIN;
uint16_t WaterfallData[100][128] = {1};
int Gain = 50;
static const long bandInit = 9008450; // 8800000 8565000 to initially set the frequency. Was 9020000
volatile long freq = bandInit ;
// For optimized ILI9341_t3 library
#define TFT_DC 20
#define TFT_CS 21
#define TFT_RST 255 // 255 = unused, connect to 3.3V
#define TFT_MOSI 7
#define TFT_SCLK 14
#define TFT_MISO 12
ILI9341_t3 tft = ILI9341_t3(TFT_CS, TFT_DC, TFT_RST, TFT_MOSI, TFT_SCLK, TFT_MISO);
Si5351 si5351; // Name for the Si5351 DDS
// Setup audio shield
AudioInputI2S audioInput;
AudioMixer4 InputAmp;
AudioAnalyzeFFT256 FFT;
// Setup the audio connections
AudioConnection patchCord1(audioInput, 0, InputAmp, 0);
AudioConnection patchCord2(InputAmp, 0, FFT, 0);
// Instantiate the Audio Shield
AudioControlSGTL5000 audioShield;
void setup()
{
Serial.begin(9600);
// Setup screen
tft.begin();
tft.setRotation(1);
tft.fillScreen(ILI9341_BLACK);
tft.drawRect(31, 0, 257, 37, ILI9341_YELLOW);
tft.drawRect(31, 36, 257, 103, ILI9341_YELLOW);
tft.drawRect(31, 138, 257, 102, ILI9341_YELLOW);
// Setup audio shield.
AudioMemory(12);
audioShield.enable();
audioShield.inputSelect(myInput);
InputAmp.gain(0, Gain);
FFT.windowFunction(AudioWindowHanning256);
FFT.averageTogether(30);
// Setup the DDS
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
si5351.drive_strength(SI5351_CLK1, SI5351_DRIVE_8MA);
si5351.set_freq(freq * 100ULL, SI5351_CLK1);
}
void loop()
{
if (FFT.available())
UpdateDisplay();
if (Serial.available() > 0)
{
char c = Serial.read();
switch (c)
{
case 'w': Gain = Gain + 10; break;
case 's': Gain = Gain - 10; break;
}
Serial.println(Gain);
InputAmp.gain(0, Gain);
}
}
void UpdateDisplay()
{
int bar = 0;
int xPos = 0;
int low = 0;
// Spectrum
for (int x = 0; x <= 127; x++)
{
WaterfallData[0][x] = abs(FFT.output[x]);
bar = WaterfallData[0][x];
if (bar > 100)
bar = 100;
tft.drawFastVLine(32 + (xPos * 2), 138 - bar, bar, ILI9341_GREEN); //draw green bar
tft.drawFastVLine(32 + (xPos * 2), 38, 100 - bar, ILI9341_BLACK); //finish off with black to the top of the screen
xPos++;
}
// Waterfall
for (int row = 99; row >= 0; row--)
for (int col = 0; col <= 127; col++)
{
WaterfallData[row][col] = WaterfallData[row - 1][col];
if (WaterfallData[row][col] >= low + 75)
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_RED);
else if ((WaterfallData[row][col] >= low + 50) && (WaterfallData[row][col] < low + 75))
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_MAGENTA);
else if ((WaterfallData[row][col] >= low + 30) && (WaterfallData[row][col] < low + 50))
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_YELLOW);
else if ((WaterfallData[row][col] >= low + 20) && (WaterfallData[row][col] < low + 30))
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_BLUE);
else if (WaterfallData[row][col] < low + 20)
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_BLACK);
}
}
void SendFrequency()
{
si5351.set_freq(freq * 100ULL, SI5351_CLK1);
}
Test Code
#include "SPI.h"
#include "ILI9341_t3.h"
#include <si5351.h> // Si5351Jason library
#include <Audio.h>
//const int myInput = AUDIO_INPUT_MIC;
const int myInput = AUDIO_INPUT_LINEIN;
uint16_t WaterfallData[100][128] = {1};
int Gain = 50;
static const long bandInit = 9008450; // 8800000 8565000 to initially set the frequency. Was 9020000
volatile long freq = bandInit ;
// For optimized ILI9341_t3 library
#define TFT_DC 20
#define TFT_CS 21
#define TFT_RST 255 // 255 = unused, connect to 3.3V
#define TFT_MOSI 7
#define TFT_SCLK 14
#define TFT_MISO 12
ILI9341_t3 tft = ILI9341_t3(TFT_CS, TFT_DC, TFT_RST, TFT_MOSI, TFT_SCLK, TFT_MISO);
Si5351 si5351; // Name for the Si5351 DDS
// Setup audio shield
AudioInputI2S audioInput;
AudioMixer4 InputAmp;
AudioAnalyzeFFT256 FFT;
// Setup the audio connections
AudioConnection patchCord1(audioInput, 0, InputAmp, 0);
AudioConnection patchCord2(InputAmp, 0, FFT, 0);
// Instantiate the Audio Shield
AudioControlSGTL5000 audioShield;
void setup()
{
Serial.begin(9600);
// Setup screen
tft.begin();
tft.setRotation(1);
tft.fillScreen(ILI9341_BLACK);
tft.drawRect(31, 0, 257, 37, ILI9341_YELLOW);
tft.drawRect(31, 36, 257, 103, ILI9341_YELLOW);
tft.drawRect(31, 138, 257, 102, ILI9341_YELLOW);
// Setup audio shield.
AudioMemory(12);
audioShield.enable();
audioShield.inputSelect(myInput);
InputAmp.gain(0, Gain);
FFT.windowFunction(AudioWindowHanning256);
FFT.averageTogether(30);
// Setup the DDS
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
si5351.drive_strength(SI5351_CLK1, SI5351_DRIVE_8MA);
si5351.set_freq(freq * 100ULL, SI5351_CLK1);
}
void loop()
{
if (FFT.available())
UpdateDisplay();
if (Serial.available() > 0)
{
char c = Serial.read();
switch (c)
{
case 'w': Gain = Gain + 10; break;
case 's': Gain = Gain - 10; break;
}
Serial.println(Gain);
InputAmp.gain(0, Gain);
}
}
void UpdateDisplay()
{
int bar = 0;
int xPos = 0;
int low = 0;
// Spectrum
for (int x = 0; x <= 127; x++)
{
WaterfallData[0][x] = abs(FFT.output[x]);
bar = WaterfallData[0][x];
if (bar > 100)
bar = 100;
tft.drawFastVLine(32 + (xPos * 2), 138 - bar, bar, ILI9341_GREEN); //draw green bar
tft.drawFastVLine(32 + (xPos * 2), 38, 100 - bar, ILI9341_BLACK); //finish off with black to the top of the screen
xPos++;
}
// Waterfall
for (int row = 99; row >= 0; row--)
for (int col = 0; col <= 127; col++)
{
WaterfallData[row][col] = WaterfallData[row - 1][col];
if (WaterfallData[row][col] >= low + 75)
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_RED);
else if ((WaterfallData[row][col] >= low + 50) && (WaterfallData[row][col] < low + 75))
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_MAGENTA);
else if ((WaterfallData[row][col] >= low + 30) && (WaterfallData[row][col] < low + 50))
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_YELLOW);
else if ((WaterfallData[row][col] >= low + 20) && (WaterfallData[row][col] < low + 30))
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_BLUE);
else if (WaterfallData[row][col] < low + 20)
tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_BLACK);
}
}
void SendFrequency()
{
si5351.set_freq(freq * 100ULL, SI5351_CLK1);
}
Saturday, 26 January 2019
Si5351 Quadrature Clock Output down to 3MHz
Credit to Brian Harper M1CEM and Miguel BartiƩ PY2OHH
Step 1. Edit si5351.h file. Change the SI5351_PLL_VCO_MIN to 380000000, i.e.,
#define SI5351_PLL_VCO_MIN 380000000
Step 2. Example code snippet:
volatile long freq = 3500000;
volatile int Even_Divisor = 0;
volatile int oldEven_Divisor = 0;
void EvenDivisor()
{
if (freq < 6850000)
{
Even_Divisor = 126;
}
if ((freq >= 6850000) && (freq < 9500000))
{
Even_Divisor = 88;
}
if ((freq >= 9500000) && (freq < 13600000))
{
Even_Divisor = 64;
}
if ((freq >= 13600000) && (freq < 17500000))
{
Even_Divisor = 44;
}
if ((freq >= 17500000) && (freq < 25000000))
{
Even_Divisor = 34;
}
if ((freq >= 25000000) && (freq < 36000000))
{
Even_Divisor = 24;
}
if ((freq >= 36000000) && (freq < 45000000)) {
Even_Divisor = 18;
}
if ((freq >= 45000000) && (freq < 60000000)) {
Even_Divisor = 14;
}
if ((freq >= 60000000) && (freq < 80000000)) {
Even_Divisor = 10;
}
if ((freq >= 80000000) && (freq < 100000000)) {
Even_Divisor = 8;
}
if ((freq >= 100000000) && (freq < 146600000)) {
Even_Divisor = 6;
}
if ((freq >= 150000000) && (freq < 220000000)) {
Even_Divisor = 4;
}
}
void SendFrequency()
{
EvenDivisor();
si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK0);
si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK2);
si5351.set_phase(SI5351_CLK0, 0);
si5351.set_phase(SI5351_CLK2, Even_Divisor);
if(Even_Divisor != oldEven_Divisor)
{
si5351.pll_reset(SI5351_PLLA);
oldEven_Divisor = Even_Divisor;
}
}
Step 1. Edit si5351.h file. Change the SI5351_PLL_VCO_MIN to 380000000, i.e.,
#define SI5351_PLL_VCO_MIN 380000000
Step 2. Example code snippet:
volatile long freq = 3500000;
volatile int Even_Divisor = 0;
volatile int oldEven_Divisor = 0;
void EvenDivisor()
{
if (freq < 6850000)
{
Even_Divisor = 126;
}
if ((freq >= 6850000) && (freq < 9500000))
{
Even_Divisor = 88;
}
if ((freq >= 9500000) && (freq < 13600000))
{
Even_Divisor = 64;
}
if ((freq >= 13600000) && (freq < 17500000))
{
Even_Divisor = 44;
}
if ((freq >= 17500000) && (freq < 25000000))
{
Even_Divisor = 34;
}
if ((freq >= 25000000) && (freq < 36000000))
{
Even_Divisor = 24;
}
if ((freq >= 36000000) && (freq < 45000000)) {
Even_Divisor = 18;
}
if ((freq >= 45000000) && (freq < 60000000)) {
Even_Divisor = 14;
}
if ((freq >= 60000000) && (freq < 80000000)) {
Even_Divisor = 10;
}
if ((freq >= 80000000) && (freq < 100000000)) {
Even_Divisor = 8;
}
if ((freq >= 100000000) && (freq < 146600000)) {
Even_Divisor = 6;
}
if ((freq >= 150000000) && (freq < 220000000)) {
Even_Divisor = 4;
}
}
void SendFrequency()
{
EvenDivisor();
si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK0);
si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK2);
si5351.set_phase(SI5351_CLK0, 0);
si5351.set_phase(SI5351_CLK2, Even_Divisor);
if(Even_Divisor != oldEven_Divisor)
{
si5351.pll_reset(SI5351_PLLA);
oldEven_Divisor = Even_Divisor;
}
}
Monday, 14 January 2019
Homebrew Power/SWR Meter
Please see YouTube for details:
https://www.youtube.com/channel/UCSNPW3_gzuMJcX_ErBZTv2g
This is my first idea for a directional coupler. Please note that this is not suppose to be a competition or commercial grade device. My aim is to keep the costs down, but still have a functional power/SWR meter at the end.
Note also the 51 ohm (below) termination resistor is now 150 ohm.
Final Software:
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
volatile float FwdVoltage = 0;
volatile float RevVoltage = 0;
volatile float PWR_Cal = 0;
volatile float SWR_Cal = 0;
volatile float PWR = 0;
volatile float SWR = 0;
volatile float FwdVoltageReadings[10];
volatile float FwdVoltageAverage;
volatile float RevVoltageReadings[10];
volatile float RevVoltageAverage;
volatile int FwdNumberOfLines = 0;
volatile int RevNumberOfLines = 0;
volatile int FwdNumberOfLinesToBlank = 0;
volatile int RevNumberOfLinesToBlank = 0;
volatile int AvCount = 0;
volatile double oldPWR = 0;
volatile double oldSWR = 0;
// Instantiate the Objects
LiquidCrystal_I2C lcd(0x27, 16, 2);
//Custom bar characters
const byte Bar1Array[8] = {B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000};
const byte Bar2Array[8] = {B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000};
const byte Bar3Array[8] = {B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100};
const byte Bar4Array[8] = {B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110};
const byte Bar5Array[8] = {B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111};
void setup()
{
pinMode(A0, INPUT); //Fwd power voltage pin
pinMode(A1, INPUT); //Rev power voltage pin
pinMode(A2, INPUT); //PWR cal pin
pinMode(A3, INPUT); //SWR cal pin
//analogReference(EXTERNAL);
Serial.begin(9600);
// Initialize the display
lcd.begin();
lcd.backlight();
lcd.createChar(1, Bar1Array); //Special charaters for the PWR and SWR bar display
lcd.createChar(2, Bar2Array);
lcd.createChar(3, Bar3Array);
lcd.createChar(4, Bar4Array);
lcd.createChar(5, Bar5Array);
UpdateDisplay();
}
void loop()
{
FwdVoltage = analogRead(A0);
RevVoltage = analogRead(A1);
PWR_Cal = analogRead(A2);
SWR_Cal = analogRead(A3);
FwdVoltageReadings[AvCount] = FwdVoltage; // Put fwd power reading into array
RevVoltageReadings[AvCount] = RevVoltage; // Put rev power reading into array
AvCount++;
if (AvCount == 9) // 0 to 9 = 10 bins
{
FwdVoltageAverage = 0;
RevVoltageAverage = 0;
for (int x = 0; x <= 9; x++)
FwdVoltageAverage = FwdVoltageAverage + FwdVoltageReadings[x];
FwdVoltageAverage = FwdVoltageAverage / 10; // Calc average
FwdVoltageAverage = FwdVoltageAverage - 136; // Subtract noise
FwdVoltageAverage = abs(FwdVoltageAverage); // Make absolute (remove any negative)
FwdVoltageAverage = FwdVoltageAverage * 5 / 1024; // covert into voltage
FwdVoltageAverage = FwdVoltageAverage + (PWR_Cal * 5 / 1024); // Cal to scope (no between 0 and 5)
for (int x = 0; x <= 9; x++)
RevVoltageAverage = RevVoltageAverage + RevVoltageReadings[x];
RevVoltageAverage = RevVoltageAverage / 10; // Calc average
RevVoltageAverage = RevVoltageAverage - 166; // Subtract noise
RevVoltageAverage = abs(RevVoltageAverage); // Make absolute (remove any negative)
RevVoltageAverage = RevVoltageAverage * 5 / 1024; // covert into voltage
// Lookup table for forward power
if (FwdVoltageAverage < 1.855)
PWR = 0;
else if ((FwdVoltageAverage >= 1.855) && (FwdVoltageAverage < 1.97))
PWR = 1;
else if ((FwdVoltageAverage >= 1.97) && (FwdVoltageAverage < 2.017))
PWR = 2;
else if ((FwdVoltageAverage >= 2.017) && (FwdVoltageAverage < 2.051))
PWR = 3;
else if ((FwdVoltageAverage >= 2.051) && (FwdVoltageAverage < 2.056))
PWR = 4;
else if ((FwdVoltageAverage >= 2.056) && (FwdVoltageAverage < 2.07))
PWR = 5;
else if ((FwdVoltageAverage >= 2.07) && (FwdVoltageAverage < 2.085))
PWR = 6;
else if ((FwdVoltageAverage >= 2.085) && (FwdVoltageAverage < 2.109))
PWR = 7;
else if ((FwdVoltageAverage >= 2.109) && (FwdVoltageAverage < 2.124))
PWR = 8;
else if ((FwdVoltageAverage >= 2.124) && (FwdVoltageAverage < 2.134))
PWR = 9;
else if ((FwdVoltageAverage >= 2.134) && (FwdVoltageAverage < 2.144))
PWR = 10;
else if ((FwdVoltageAverage >= 2.144) && (FwdVoltageAverage < 2.153))
PWR = 11;
else if ((FwdVoltageAverage >= 2.153) && (FwdVoltageAverage < 2.163))
PWR = 12;
else if ((FwdVoltageAverage >= 2.163) && (FwdVoltageAverage < 2.173))
PWR = 13;
else if ((FwdVoltageAverage >= 2.173) && (FwdVoltageAverage < 2.183))
PWR = 14;
else if ((FwdVoltageAverage >= 2.183) && (FwdVoltageAverage < 2.192))
PWR = 15;
else if ((FwdVoltageAverage >= 2.192) && (FwdVoltageAverage < 2.197))
PWR = 16;
else if ((FwdVoltageAverage >= 2.197) && (FwdVoltageAverage < 2.212))
PWR = 17;
else if ((FwdVoltageAverage >= 2.212) && (FwdVoltageAverage < 2.217))
PWR = 18;
else if ((FwdVoltageAverage >= 2.217) && (FwdVoltageAverage < 2.22))
PWR = 19;
// 20 - 24W
else if ((FwdVoltageAverage >= 2.220) && (FwdVoltageAverage < 2.246))
PWR = ((FwdVoltageAverage - 2.22) * 5 / .026) + 20;
// 25 - 29W
else if ((FwdVoltageAverage >= 2.246) && (FwdVoltageAverage < 2.266))
PWR = ((FwdVoltageAverage - 2.246) * 5 / .02) + 25;
// 30 - 34W
else if ((FwdVoltageAverage >= 2.266) && (FwdVoltageAverage < 2.280))
PWR = ((FwdVoltageAverage - 2.266) * 5 / .014) + 30;
// 35 - 39W
else if ((FwdVoltageAverage >= 2.280) && (FwdVoltageAverage < 2.300))
PWR = ((FwdVoltageAverage - 2.280) * 5 / .02) + 35;
// >= 40W
else if (FwdVoltage >= 2.3)
PWR = ((FwdVoltageAverage - 2.3) * 60 / .07) + 40;
if ((PWR > 0) && (PWR < 3))
FwdNumberOfLines = 1;
else
FwdNumberOfLines = PWR / 3.33; // Power bar. 100W / 30 segments = 3.33W per segment
if (PWR == 0)
SWR = 0;
else
{
SWR = (1 + sqrt(RevVoltageAverage / FwdVoltageAverage)) / (1 - sqrt(RevVoltageAverage / FwdVoltageAverage));
SWR = SWR / (SWR_Cal * 5 / 1024); // Cal to scope (no between 0 and 5)
}
RevNumberOfLines = SWR * 5; // One segment per SWR increment
AvCount = 0;
}
if ((PWR != oldPWR) || (SWR != oldSWR)) // Update display if PWR or SWR has changed
{
//SendTelemetryData();
UpdateDisplay();
oldPWR = PWR;
oldSWR = SWR;
}
}
void SendTelemetryData()
{
Serial.print("Foward Reading Average: ");
Serial.println(FwdVoltageAverage, 3);
Serial.print("Reverse Reading Average: ");
Serial.println(RevVoltageAverage, 3);
Serial.print("Power to Load: ");
Serial.println(PWR);
Serial.print("SWR: ");
Serial.println(SWR);
Serial.println("");
}
void UpdateDisplay()
{
//Display PWR
lcd.setCursor(0, 0);
lcd.print("PWR");
lcd.setCursor(3, 0);
lcd.print(" ");
lcd.setCursor(4, 0);
lcd.print(PWR, 0);
//Display SWR
lcd.setCursor(8, 0);
lcd.print("SWR");
lcd.setCursor(11, 0);
lcd.print(" ");
lcd.setCursor(12, 0);
lcd.print(SWR, 1);
//Draw PWR Bar
FwdNumberOfLinesToBlank = 29 - FwdNumberOfLines;
lcd.setCursor(0, 1);
lcd.print("P");
while (FwdNumberOfLines >= 5)
{
lcd.write(5);
FwdNumberOfLines = FwdNumberOfLines - 5;
}
if (FwdNumberOfLines == 1)
lcd.write(1);
if (FwdNumberOfLines == 2)
lcd.write(2);
if (FwdNumberOfLines == 3)
lcd.write(3);
if (FwdNumberOfLines == 4)
lcd.write(4);
while (FwdNumberOfLinesToBlank >= 5)
{
lcd.print(" ");
FwdNumberOfLinesToBlank = FwdNumberOfLinesToBlank - 5;
}
// Blank sedment before 'S'
lcd.setCursor(7, 1);
lcd.print(" ");
//Draw SWR Bar
RevNumberOfLinesToBlank = 29 - RevNumberOfLines;
lcd.setCursor(8, 1);
lcd.print("S");
while (RevNumberOfLines >= 5)
{
lcd.write(5);
RevNumberOfLines = RevNumberOfLines - 5;
}
if (RevNumberOfLines == 1)
lcd.write(1);
if (RevNumberOfLines == 2)
lcd.write(2);
if (RevNumberOfLines == 3)
lcd.write(3);
if (RevNumberOfLines == 4)
lcd.write(4);
while (RevNumberOfLinesToBlank >= 5)
{
lcd.print(" ");
RevNumberOfLinesToBlank = RevNumberOfLinesToBlank - 5;
}
}
https://www.youtube.com/channel/UCSNPW3_gzuMJcX_ErBZTv2g
This is my first idea for a directional coupler. Please note that this is not suppose to be a competition or commercial grade device. My aim is to keep the costs down, but still have a functional power/SWR meter at the end.
Note also the 51 ohm (below) termination resistor is now 150 ohm.
Tandem coupler experiments. This is looking very promising with a wide frequency and power range.
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
volatile float FwdVoltage = 0;
volatile float RevVoltage = 0;
volatile float PWR_Cal = 0;
volatile float SWR_Cal = 0;
volatile float PWR = 0;
volatile float SWR = 0;
volatile float FwdVoltageReadings[10];
volatile float FwdVoltageAverage;
volatile float RevVoltageReadings[10];
volatile float RevVoltageAverage;
volatile int FwdNumberOfLines = 0;
volatile int RevNumberOfLines = 0;
volatile int FwdNumberOfLinesToBlank = 0;
volatile int RevNumberOfLinesToBlank = 0;
volatile int AvCount = 0;
volatile double oldPWR = 0;
volatile double oldSWR = 0;
// Instantiate the Objects
LiquidCrystal_I2C lcd(0x27, 16, 2);
//Custom bar characters
const byte Bar1Array[8] = {B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000};
const byte Bar2Array[8] = {B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000};
const byte Bar3Array[8] = {B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100};
const byte Bar4Array[8] = {B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110};
const byte Bar5Array[8] = {B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111};
void setup()
{
pinMode(A0, INPUT); //Fwd power voltage pin
pinMode(A1, INPUT); //Rev power voltage pin
pinMode(A2, INPUT); //PWR cal pin
pinMode(A3, INPUT); //SWR cal pin
//analogReference(EXTERNAL);
Serial.begin(9600);
// Initialize the display
lcd.begin();
lcd.backlight();
lcd.createChar(1, Bar1Array); //Special charaters for the PWR and SWR bar display
lcd.createChar(2, Bar2Array);
lcd.createChar(3, Bar3Array);
lcd.createChar(4, Bar4Array);
lcd.createChar(5, Bar5Array);
UpdateDisplay();
}
void loop()
{
FwdVoltage = analogRead(A0);
RevVoltage = analogRead(A1);
PWR_Cal = analogRead(A2);
SWR_Cal = analogRead(A3);
FwdVoltageReadings[AvCount] = FwdVoltage; // Put fwd power reading into array
RevVoltageReadings[AvCount] = RevVoltage; // Put rev power reading into array
AvCount++;
if (AvCount == 9) // 0 to 9 = 10 bins
{
FwdVoltageAverage = 0;
RevVoltageAverage = 0;
for (int x = 0; x <= 9; x++)
FwdVoltageAverage = FwdVoltageAverage + FwdVoltageReadings[x];
FwdVoltageAverage = FwdVoltageAverage / 10; // Calc average
FwdVoltageAverage = FwdVoltageAverage - 136; // Subtract noise
FwdVoltageAverage = abs(FwdVoltageAverage); // Make absolute (remove any negative)
FwdVoltageAverage = FwdVoltageAverage * 5 / 1024; // covert into voltage
FwdVoltageAverage = FwdVoltageAverage + (PWR_Cal * 5 / 1024); // Cal to scope (no between 0 and 5)
for (int x = 0; x <= 9; x++)
RevVoltageAverage = RevVoltageAverage + RevVoltageReadings[x];
RevVoltageAverage = RevVoltageAverage / 10; // Calc average
RevVoltageAverage = RevVoltageAverage - 166; // Subtract noise
RevVoltageAverage = abs(RevVoltageAverage); // Make absolute (remove any negative)
RevVoltageAverage = RevVoltageAverage * 5 / 1024; // covert into voltage
// Lookup table for forward power
if (FwdVoltageAverage < 1.855)
PWR = 0;
else if ((FwdVoltageAverage >= 1.855) && (FwdVoltageAverage < 1.97))
PWR = 1;
else if ((FwdVoltageAverage >= 1.97) && (FwdVoltageAverage < 2.017))
PWR = 2;
else if ((FwdVoltageAverage >= 2.017) && (FwdVoltageAverage < 2.051))
PWR = 3;
else if ((FwdVoltageAverage >= 2.051) && (FwdVoltageAverage < 2.056))
PWR = 4;
else if ((FwdVoltageAverage >= 2.056) && (FwdVoltageAverage < 2.07))
PWR = 5;
else if ((FwdVoltageAverage >= 2.07) && (FwdVoltageAverage < 2.085))
PWR = 6;
else if ((FwdVoltageAverage >= 2.085) && (FwdVoltageAverage < 2.109))
PWR = 7;
else if ((FwdVoltageAverage >= 2.109) && (FwdVoltageAverage < 2.124))
PWR = 8;
else if ((FwdVoltageAverage >= 2.124) && (FwdVoltageAverage < 2.134))
PWR = 9;
else if ((FwdVoltageAverage >= 2.134) && (FwdVoltageAverage < 2.144))
PWR = 10;
else if ((FwdVoltageAverage >= 2.144) && (FwdVoltageAverage < 2.153))
PWR = 11;
else if ((FwdVoltageAverage >= 2.153) && (FwdVoltageAverage < 2.163))
PWR = 12;
else if ((FwdVoltageAverage >= 2.163) && (FwdVoltageAverage < 2.173))
PWR = 13;
else if ((FwdVoltageAverage >= 2.173) && (FwdVoltageAverage < 2.183))
PWR = 14;
else if ((FwdVoltageAverage >= 2.183) && (FwdVoltageAverage < 2.192))
PWR = 15;
else if ((FwdVoltageAverage >= 2.192) && (FwdVoltageAverage < 2.197))
PWR = 16;
else if ((FwdVoltageAverage >= 2.197) && (FwdVoltageAverage < 2.212))
PWR = 17;
else if ((FwdVoltageAverage >= 2.212) && (FwdVoltageAverage < 2.217))
PWR = 18;
else if ((FwdVoltageAverage >= 2.217) && (FwdVoltageAverage < 2.22))
PWR = 19;
// 20 - 24W
else if ((FwdVoltageAverage >= 2.220) && (FwdVoltageAverage < 2.246))
PWR = ((FwdVoltageAverage - 2.22) * 5 / .026) + 20;
// 25 - 29W
else if ((FwdVoltageAverage >= 2.246) && (FwdVoltageAverage < 2.266))
PWR = ((FwdVoltageAverage - 2.246) * 5 / .02) + 25;
// 30 - 34W
else if ((FwdVoltageAverage >= 2.266) && (FwdVoltageAverage < 2.280))
PWR = ((FwdVoltageAverage - 2.266) * 5 / .014) + 30;
// 35 - 39W
else if ((FwdVoltageAverage >= 2.280) && (FwdVoltageAverage < 2.300))
PWR = ((FwdVoltageAverage - 2.280) * 5 / .02) + 35;
// >= 40W
else if (FwdVoltage >= 2.3)
PWR = ((FwdVoltageAverage - 2.3) * 60 / .07) + 40;
if ((PWR > 0) && (PWR < 3))
FwdNumberOfLines = 1;
else
FwdNumberOfLines = PWR / 3.33; // Power bar. 100W / 30 segments = 3.33W per segment
if (PWR == 0)
SWR = 0;
else
{
SWR = (1 + sqrt(RevVoltageAverage / FwdVoltageAverage)) / (1 - sqrt(RevVoltageAverage / FwdVoltageAverage));
SWR = SWR / (SWR_Cal * 5 / 1024); // Cal to scope (no between 0 and 5)
}
RevNumberOfLines = SWR * 5; // One segment per SWR increment
AvCount = 0;
}
if ((PWR != oldPWR) || (SWR != oldSWR)) // Update display if PWR or SWR has changed
{
//SendTelemetryData();
UpdateDisplay();
oldPWR = PWR;
oldSWR = SWR;
}
}
void SendTelemetryData()
{
Serial.print("Foward Reading Average: ");
Serial.println(FwdVoltageAverage, 3);
Serial.print("Reverse Reading Average: ");
Serial.println(RevVoltageAverage, 3);
Serial.print("Power to Load: ");
Serial.println(PWR);
Serial.print("SWR: ");
Serial.println(SWR);
Serial.println("");
}
void UpdateDisplay()
{
//Display PWR
lcd.setCursor(0, 0);
lcd.print("PWR");
lcd.setCursor(3, 0);
lcd.print(" ");
lcd.setCursor(4, 0);
lcd.print(PWR, 0);
//Display SWR
lcd.setCursor(8, 0);
lcd.print("SWR");
lcd.setCursor(11, 0);
lcd.print(" ");
lcd.setCursor(12, 0);
lcd.print(SWR, 1);
//Draw PWR Bar
FwdNumberOfLinesToBlank = 29 - FwdNumberOfLines;
lcd.setCursor(0, 1);
lcd.print("P");
while (FwdNumberOfLines >= 5)
{
lcd.write(5);
FwdNumberOfLines = FwdNumberOfLines - 5;
}
if (FwdNumberOfLines == 1)
lcd.write(1);
if (FwdNumberOfLines == 2)
lcd.write(2);
if (FwdNumberOfLines == 3)
lcd.write(3);
if (FwdNumberOfLines == 4)
lcd.write(4);
while (FwdNumberOfLinesToBlank >= 5)
{
lcd.print(" ");
FwdNumberOfLinesToBlank = FwdNumberOfLinesToBlank - 5;
}
// Blank sedment before 'S'
lcd.setCursor(7, 1);
lcd.print(" ");
//Draw SWR Bar
RevNumberOfLinesToBlank = 29 - RevNumberOfLines;
lcd.setCursor(8, 1);
lcd.print("S");
while (RevNumberOfLines >= 5)
{
lcd.write(5);
RevNumberOfLines = RevNumberOfLines - 5;
}
if (RevNumberOfLines == 1)
lcd.write(1);
if (RevNumberOfLines == 2)
lcd.write(2);
if (RevNumberOfLines == 3)
lcd.write(3);
if (RevNumberOfLines == 4)
lcd.write(4);
while (RevNumberOfLinesToBlank >= 5)
{
lcd.print(" ");
RevNumberOfLinesToBlank = RevNumberOfLinesToBlank - 5;
}
}
Friday, 11 January 2019
Homebrew 2 Tone Audio Oscillator
2 Tone oscillator. Based on two Wein bridge oscillators using LM358 op amps. See YouTube for detaails:
https://youtu.be/H3f-ex2S4Xw
Wednesday, 14 November 2018
Homebrew SSB Rig based on MC1350P IF Amp
See the YouTube channel for details:
https://www.youtube.com/channel/UCSNPW3_gzuMJcX_ErBZTv2g
Audio Amplifier
Note. Original schematic had a 47uF capacitor between the two stages. That is now a 3.3uF (as above). This reduces the quiet time when changing from TX to RX.
Note. T1 secondary is now from Pin 4 and earth. Pin 6 is tied to earth via a 100nF cap.
Note. Changed output coupling capacitor to a 1uF. Reduces short term CW on TX. A 100nF cap works well too.
Additional replay to allow the BPF and follow RF amplifier to be used for both RX (antenna amplifier) and TX (RF pre-amplifier)
RF Driver Amplifier.
AGC. Designed to provide 6-7VDC to the MC1350P.
RC phase shift oscillator for antenna/amp tuning.
Final code supporting dual band function.
#include <Wire.h>
#include <SPI.h>
#include <LiquidCrystal_I2C.h>
#include <si5351.h>
const uint32_t bandStart80 = 3500000; // start of 80m
const uint32_t bandStart40 = 7000000; // start of 40m
const uint32_t bandEnd80 = 3900000; // end of 80m
const uint32_t bandEnd40 = 7300000; // end of 40m
const uint32_t bandInit = 3690000; // where to initially set the frequency
volatile int band = 0; // 0 = 80m, 1 = 40m
volatile int oldband = 0;
volatile long oldfreq = 0;
volatile long currentfreq = 0;
volatile long freq80 = 3690000;
volatile long freq40 = 7120000;
volatile int updatedisplay = 0;
volatile long SMeterReadings[10];
volatile long SMeterAverage;
int AvCount = 0;
volatile uint32_t freq = bandInit ; // this is a variable (changes) - set it to the beginning of the band
volatile uint32_t radix = 1000; // how much to change the frequency by, clicking the rotary encoder will change this.
volatile uint32_t oldradix = 1;
volatile uint32_t BFO_freq = 9001350;
// Rotary encoder pins and other inputs
static const int pushPin = 9;
static const int rotBPin = 2;
static const int rotAPin = 3;
static const int bandSW = 4;
// Rotary encoder variables, used by interrupt routines
volatile int rotState = 0;
volatile int rotAval = 1;
volatile int rotBval = 1;
// Instantiate the Objects
LiquidCrystal_I2C lcd(0x27, 16, 2);
Si5351 si5351;
void setup()
{
// Set up frequency and radix switches
pinMode(rotAPin, INPUT);
pinMode(rotAPin, INPUT_PULLUP);
pinMode(rotBPin, INPUT);
pinMode(rotBPin, INPUT_PULLUP);
pinMode(pushPin, INPUT);
pinMode(pushPin, INPUT_PULLUP);
pinMode(bandSW, INPUT_PULLUP);
pinMode(A7, INPUT);
// Set up interrupt pins
attachInterrupt(digitalPinToInterrupt(rotAPin), ISRrotAChange, CHANGE);
attachInterrupt(digitalPinToInterrupt(rotBPin), ISRrotBChange, CHANGE);
// Initialize the display
lcd.begin();
lcd.backlight();
UpdateDisplay();
delay(1000);
// Initialize the DDS
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
si5351.set_correction(31830, SI5351_PLL_INPUT_XO); // Set to specific Si5351 calibration number
si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA);
si5351.drive_strength(SI5351_CLK2, SI5351_DRIVE_8MA);
si5351.set_freq((freq * 100ULL), SI5351_CLK0);
si5351.set_freq((BFO_freq * 100ULL), SI5351_CLK2);
}
void loop()
{
band = digitalRead(bandSW);
if (band != oldband) // Check if band has changed
{
if (band == 0) // Was 40m, now 80m
{
freq40 = freq; // Store 40m VFO freq
freq = freq80; // Make VFO = stored 80m freq
}
if (band == 1) // Was 80m, now 40m
{
freq80 = freq; // Store 80m VFO freq
freq = freq40; // Make VFO = stored 40m freq
}
UpdateDisplay();
oldband = band;
}
currentfreq = getfreq(); // Interrupt safe method to get the current frequency
if (currentfreq != oldfreq)
{
UpdateDisplay();
SendFrequency();
oldfreq = currentfreq;
}
if (digitalRead(pushPin) == LOW)
{
delay(10);
while (digitalRead(pushPin) == LOW)
{
if (updatedisplay == 1)
{
UpdateDisplay();
updatedisplay = 0;
}
}
delay(50);
}
SMeterReadings[AvCount] = analogRead(A7);
AvCount++;
if (AvCount == 10)
{
SMeterAverage = (SMeterReadings[0] + SMeterReadings[1] + SMeterReadings[2] + SMeterReadings[3] + SMeterReadings[4]
+ SMeterReadings[5] + SMeterReadings[6] + SMeterReadings[7] + SMeterReadings[8] + SMeterReadings[9]) / 10;
UpdateDisplay();
AvCount = 0;
}
}
long getfreq()
{
long temp_freq;
cli();
temp_freq = freq;
sei();
return temp_freq;
}
// Interrupt routines
void ISRrotAChange()
{
if (digitalRead(rotAPin))
{
rotAval = 1;
UpdateRot();
}
else
{
rotAval = 0;
UpdateRot();
}
}
void ISRrotBChange()
{
if (digitalRead(rotBPin))
{
rotBval = 1;
UpdateRot();
}
else
{
rotBval = 0;
UpdateRot();
}
}
void UpdateRot()
{
switch (rotState)
{
case 0: // Idle state, look for direction
if (!rotBval)
rotState = 1; // CW 1
if (!rotAval)
rotState = 11; // CCW 1
break;
case 1: // CW, wait for A low while B is low
if (!rotBval)
{
if (!rotAval)
{
// either increment radixindex or freq
if (digitalRead(pushPin) == LOW)
{
updatedisplay = 1;
radix = radix * 10;
if (radix > 100000)
radix = 100000;
}
else
{
freq = freq + radix;
if ((band == 0) && (freq > bandEnd80))
freq = bandEnd80;
if ((band == 1) && (freq > bandEnd40))
freq = bandEnd40;
}
rotState = 2; // CW 2
}
}
else if (rotAval)
rotState = 0; // It was just a glitch on B, go back to start
break;
case 2: // CW, wait for B high
if (rotBval)
rotState = 3; // CW 3
break;
case 3: // CW, wait for A high
if (rotAval)
rotState = 0; // back to idle (detent) state
break;
case 11: // CCW, wait for B low while A is low
if (!rotAval)
{
if (!rotBval)
{
// either decrement radixindex or freq
if (digitalRead(pushPin) == LOW)
{
updatedisplay = 1;
radix = radix / 10;
if (radix < 1)
radix = 1;
}
else
{
freq = freq - radix;
if ((band == 0) && (freq < bandStart80))
freq = bandStart80;
if ((band == 1) && (freq < bandStart40))
freq = bandStart40;
}
rotState = 12; // CCW 2
}
}
else if (rotBval)
rotState = 0; // It was just a glitch on A, go back to start
break;
case 12: // CCW, wait for A high
if (rotAval)
rotState = 13; // CCW 3
break;
case 13: // CCW, wait for B high
if (rotBval)
rotState = 0; // back to idle (detent) state
break;
}
}
void UpdateDisplay()
{
lcd.setCursor(0, 0);
lcd.setCursor(0, 0);
lcd.print(freq);
lcd.setCursor(0, 1);
lcd.print("ZL2CTM");
lcd.setCursor(11, 1);
if (SMeterAverage <= 850)
lcd.print("S3 ");
if ((SMeterAverage > 851) && (SMeterAverage <= 853))
lcd.print("S4 ");
if ((SMeterAverage > 854) && (SMeterAverage <= 864))
lcd.print("S5 ");
if ((SMeterAverage > 865) && (SMeterAverage <= 904))
lcd.print("S6 ");
if ((SMeterAverage > 905) && (SMeterAverage <= 989))
lcd.print("S7 ");
if ((SMeterAverage > 990) && (SMeterAverage <= 1010))
lcd.print("S8 ");
if (SMeterAverage > 1011)
lcd.print("S9 ");
if (radix != oldradix) // stops radix display flashing/blinking on freq change
{
lcd.setCursor(9, 0);
lcd.print(" ");
lcd.setCursor(9, 0);
if (radix == 1)
lcd.print(" 1 Hz");
if (radix == 10)
lcd.print(" 10 Hz");
if (radix == 100)
lcd.print(" 100 Hz");
if (radix == 1000)
lcd.print(" 1 kHz");
if (radix == 10000)
lcd.print(" 10 kHz");
if (radix == 100000)
lcd.print("100 kHz");
oldradix = radix;
}
}
void SendFrequency()
{
si5351.set_freq(((BFO_freq - freq) * 100ULL), SI5351_CLK0);
si5351.set_freq((BFO_freq * 100ULL), SI5351_CLK2);
}
https://www.youtube.com/channel/UCSNPW3_gzuMJcX_ErBZTv2g
Audio Amplifier
Antenna RF Amplifier
VFO/BFO
The Si5351 outputs go to two 1k ohm trim pots. Note, this is not the correct approach. A 50 ohm pad with the appropriate attenuation should be used. The YouTube videos explain why this is incorrect. The wiper arm goes to the two ADE-1 mixers. Both trim pots are set to approx. 1/3 from min. Adjust from min to get acceptable receive audio quality.
************************************************************
This is the new code that works with Jason Mildrum's new Si5351 Etherkit library. See https://github.com/etherkit/Si5351Arduino
#include <Wire.h>
#include <SPI.h>
#include <LiquidCrystal_I2C.h>
#include <si5351.h>
const uint32_t bandStart = 7000000; // start of 40m
const uint32_t bandEnd = 7300000; // end of 40m
const uint32_t bandInit = 7100000; // where to initially set the frequency
volatile long oldfreq = 0;
volatile long currentfreq = 0;
volatile int updatedisplay = 0;
volatile uint32_t freq = bandInit ; // this is a variable (changes) - set it to the beginning of the band
volatile uint32_t radix = 1000; // how much to change the frequency by, clicking the rotary encoder will change this.
volatile uint32_t oldradix = 1;
volatile uint32_t BFO_freq = 8003000; // Crystal filter centre freq
// Rotary encoder pins and other inputs
static const int pushPin = 9;
static const int rotBPin = 2;
static const int rotAPin = 3;
// Rotary encoder variables, used by interrupt routines
volatile int rotState = 0;
volatile int rotAval = 1;
volatile int rotBval = 1;
// Instantiate the Objects
LiquidCrystal_I2C lcd(0x27, 16, 2);
Si5351 si5351;
void setup()
{
// Set up frequency and radix switches
pinMode(rotAPin, INPUT);
pinMode(rotBPin, INPUT);
pinMode(pushPin, INPUT);
// Set up pull-up resistors on inputs
digitalWrite(rotAPin, HIGH);
digitalWrite(rotBPin, HIGH);
digitalWrite(pushPin, HIGH);
// Set up interrupt pins
attachInterrupt(digitalPinToInterrupt(rotAPin), ISRrotAChange, CHANGE);
attachInterrupt(digitalPinToInterrupt(rotBPin), ISRrotBChange, CHANGE);
// Initialize the display
lcd.begin();
lcd.backlight();
UpdateDisplay();
delay(1000);
// Initialize the DDS
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
si5351.set_correction(31830, SI5351_PLL_INPUT_XO); // Set to specific Si5351 calibration number
si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA);
si5351.drive_strength(SI5351_CLK2, SI5351_DRIVE_8MA);
si5351.set_freq((freq * 100ULL), SI5351_CLK0);
si5351.set_freq((BFO_freq * 100ULL), SI5351_CLK2);
}
void loop()
{
currentfreq = getfreq(); // Interrupt safe method to get the current frequency
if (currentfreq != oldfreq)
{
UpdateDisplay();
SendFrequency();
oldfreq = currentfreq;
}
if (digitalRead(pushPin) == LOW)
{
delay(10);
while (digitalRead(pushPin) == LOW)
{
if (updatedisplay == 1)
{
UpdateDisplay();
updatedisplay = 0;
}
}
delay(50);
}
}
long getfreq()
{
long temp_freq;
cli();
temp_freq = freq;
sei();
return temp_freq;
}
// Interrupt routines
void ISRrotAChange()
{
if (digitalRead(rotAPin))
{
rotAval = 1;
UpdateRot();
}
else
{
rotAval = 0;
UpdateRot();
}
}
void ISRrotBChange()
{
if (digitalRead(rotBPin))
{
rotBval = 1;
UpdateRot();
}
else
{
rotBval = 0;
UpdateRot();
}
}
void UpdateRot()
{
switch (rotState)
{
case 0: // Idle state, look for direction
if (!rotBval)
rotState = 1; // CW 1
if (!rotAval)
rotState = 11; // CCW 1
break;
case 1: // CW, wait for A low while B is low
if (!rotBval)
{
if (!rotAval)
{
// either increment radixindex or freq
if (digitalRead(pushPin) == LOW)
{
updatedisplay = 1;
radix = radix / 10;
if (radix < 1)
radix = 100000;
}
else
{
freq = freq + radix;
if (freq > bandEnd)
freq = bandEnd;
}
rotState = 2; // CW 2
}
}
else if (rotAval)
rotState = 0; // It was just a glitch on B, go back to start
break;
case 2: // CW, wait for B high
if (rotBval)
rotState = 3; // CW 3
break;
case 3: // CW, wait for A high
if (rotAval)
rotState = 0; // back to idle (detent) state
break;
case 11: // CCW, wait for B low while A is low
if (!rotAval)
{
if (!rotBval)
{
// either decrement radixindex or freq
if (digitalRead(pushPin) == LOW)
{
updatedisplay = 1;
radix = radix * 10;
if (radix == 100000)
radix = 1;
}
else
{
freq = freq - radix;
if (freq < bandStart)
freq = bandStart;
}
rotState = 12; // CCW 2
}
}
else if (rotBval)
rotState = 0; // It was just a glitch on A, go back to start
break;
case 12: // CCW, wait for A high
if (rotAval)
rotState = 13; // CCW 3
break;
case 13: // CCW, wait for B high
if (rotBval)
rotState = 0; // back to idle (detent) state
break;
}
}
void UpdateDisplay()
{
lcd.setCursor(0, 0);
lcd.setCursor(0, 0);
lcd.print(freq);
lcd.setCursor(0, 1);
lcd.print("ZL2CTM");
if (radix != oldradix) // stops radix display flashing/blinking on freq change
{
lcd.setCursor(9, 0);
lcd.print(" ");
lcd.setCursor(9, 0);
if (radix == 1)
lcd.print(" 1 Hz");
if (radix == 10)
lcd.print(" 10 Hz");
if (radix == 100)
lcd.print(" 100 Hz");
if (radix == 1000)
lcd.print(" 1 kHz");
if (radix == 10000)
lcd.print(" 10 kHz");
if (radix == 100000)
lcd.print("100 kHz");
oldradix = radix;
}
}
void SendFrequency()
{
si5351.set_freq((freq * 100ULL), SI5351_CLK0);
si5351.set_freq((BFO_freq * 100ULL), SI5351_CLK2);
}
************************************************************
BPF (note, 24g wire used, not 26g)
1st IF Amp
2nd IF Amp
Note. T1 secondary is now from Pin 4 and earth. Pin 6 is tied to earth via a 100nF cap.
Mic Amp (using an electret mic)
Note. Changed output coupling capacitor to a 1uF. Reduces short term CW on TX. A 100nF cap works well too.
RF Pre-Amp using NE592 Video Amp
Initial idea for the RF power amplifier. Based on two BLF1043 LDMOS devices.
Also using an old laptop power supply. 18.5VDC, 3A.
Please see the YouTube channel for test results!
RF Driver Amplifier.
Current layout of the final radio
RC phase shift oscillator for antenna/amp tuning.
Final code supporting dual band function.
#include <Wire.h>
#include <SPI.h>
#include <LiquidCrystal_I2C.h>
#include <si5351.h>
const uint32_t bandStart80 = 3500000; // start of 80m
const uint32_t bandStart40 = 7000000; // start of 40m
const uint32_t bandEnd80 = 3900000; // end of 80m
const uint32_t bandEnd40 = 7300000; // end of 40m
const uint32_t bandInit = 3690000; // where to initially set the frequency
volatile int band = 0; // 0 = 80m, 1 = 40m
volatile int oldband = 0;
volatile long oldfreq = 0;
volatile long currentfreq = 0;
volatile long freq80 = 3690000;
volatile long freq40 = 7120000;
volatile int updatedisplay = 0;
volatile long SMeterReadings[10];
volatile long SMeterAverage;
int AvCount = 0;
volatile uint32_t freq = bandInit ; // this is a variable (changes) - set it to the beginning of the band
volatile uint32_t radix = 1000; // how much to change the frequency by, clicking the rotary encoder will change this.
volatile uint32_t oldradix = 1;
volatile uint32_t BFO_freq = 9001350;
// Rotary encoder pins and other inputs
static const int pushPin = 9;
static const int rotBPin = 2;
static const int rotAPin = 3;
static const int bandSW = 4;
// Rotary encoder variables, used by interrupt routines
volatile int rotState = 0;
volatile int rotAval = 1;
volatile int rotBval = 1;
// Instantiate the Objects
LiquidCrystal_I2C lcd(0x27, 16, 2);
Si5351 si5351;
void setup()
{
// Set up frequency and radix switches
pinMode(rotAPin, INPUT);
pinMode(rotAPin, INPUT_PULLUP);
pinMode(rotBPin, INPUT);
pinMode(rotBPin, INPUT_PULLUP);
pinMode(pushPin, INPUT);
pinMode(pushPin, INPUT_PULLUP);
pinMode(bandSW, INPUT_PULLUP);
pinMode(A7, INPUT);
// Set up interrupt pins
attachInterrupt(digitalPinToInterrupt(rotAPin), ISRrotAChange, CHANGE);
attachInterrupt(digitalPinToInterrupt(rotBPin), ISRrotBChange, CHANGE);
// Initialize the display
lcd.begin();
lcd.backlight();
UpdateDisplay();
delay(1000);
// Initialize the DDS
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
si5351.set_correction(31830, SI5351_PLL_INPUT_XO); // Set to specific Si5351 calibration number
si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA);
si5351.drive_strength(SI5351_CLK2, SI5351_DRIVE_8MA);
si5351.set_freq((freq * 100ULL), SI5351_CLK0);
si5351.set_freq((BFO_freq * 100ULL), SI5351_CLK2);
}
void loop()
{
band = digitalRead(bandSW);
if (band != oldband) // Check if band has changed
{
if (band == 0) // Was 40m, now 80m
{
freq40 = freq; // Store 40m VFO freq
freq = freq80; // Make VFO = stored 80m freq
}
if (band == 1) // Was 80m, now 40m
{
freq80 = freq; // Store 80m VFO freq
freq = freq40; // Make VFO = stored 40m freq
}
UpdateDisplay();
oldband = band;
}
currentfreq = getfreq(); // Interrupt safe method to get the current frequency
if (currentfreq != oldfreq)
{
UpdateDisplay();
SendFrequency();
oldfreq = currentfreq;
}
if (digitalRead(pushPin) == LOW)
{
delay(10);
while (digitalRead(pushPin) == LOW)
{
if (updatedisplay == 1)
{
UpdateDisplay();
updatedisplay = 0;
}
}
delay(50);
}
SMeterReadings[AvCount] = analogRead(A7);
AvCount++;
if (AvCount == 10)
{
SMeterAverage = (SMeterReadings[0] + SMeterReadings[1] + SMeterReadings[2] + SMeterReadings[3] + SMeterReadings[4]
+ SMeterReadings[5] + SMeterReadings[6] + SMeterReadings[7] + SMeterReadings[8] + SMeterReadings[9]) / 10;
UpdateDisplay();
AvCount = 0;
}
}
long getfreq()
{
long temp_freq;
cli();
temp_freq = freq;
sei();
return temp_freq;
}
// Interrupt routines
void ISRrotAChange()
{
if (digitalRead(rotAPin))
{
rotAval = 1;
UpdateRot();
}
else
{
rotAval = 0;
UpdateRot();
}
}
void ISRrotBChange()
{
if (digitalRead(rotBPin))
{
rotBval = 1;
UpdateRot();
}
else
{
rotBval = 0;
UpdateRot();
}
}
void UpdateRot()
{
switch (rotState)
{
case 0: // Idle state, look for direction
if (!rotBval)
rotState = 1; // CW 1
if (!rotAval)
rotState = 11; // CCW 1
break;
case 1: // CW, wait for A low while B is low
if (!rotBval)
{
if (!rotAval)
{
// either increment radixindex or freq
if (digitalRead(pushPin) == LOW)
{
updatedisplay = 1;
radix = radix * 10;
if (radix > 100000)
radix = 100000;
}
else
{
freq = freq + radix;
if ((band == 0) && (freq > bandEnd80))
freq = bandEnd80;
if ((band == 1) && (freq > bandEnd40))
freq = bandEnd40;
}
rotState = 2; // CW 2
}
}
else if (rotAval)
rotState = 0; // It was just a glitch on B, go back to start
break;
case 2: // CW, wait for B high
if (rotBval)
rotState = 3; // CW 3
break;
case 3: // CW, wait for A high
if (rotAval)
rotState = 0; // back to idle (detent) state
break;
case 11: // CCW, wait for B low while A is low
if (!rotAval)
{
if (!rotBval)
{
// either decrement radixindex or freq
if (digitalRead(pushPin) == LOW)
{
updatedisplay = 1;
radix = radix / 10;
if (radix < 1)
radix = 1;
}
else
{
freq = freq - radix;
if ((band == 0) && (freq < bandStart80))
freq = bandStart80;
if ((band == 1) && (freq < bandStart40))
freq = bandStart40;
}
rotState = 12; // CCW 2
}
}
else if (rotBval)
rotState = 0; // It was just a glitch on A, go back to start
break;
case 12: // CCW, wait for A high
if (rotAval)
rotState = 13; // CCW 3
break;
case 13: // CCW, wait for B high
if (rotBval)
rotState = 0; // back to idle (detent) state
break;
}
}
void UpdateDisplay()
{
lcd.setCursor(0, 0);
lcd.setCursor(0, 0);
lcd.print(freq);
lcd.setCursor(0, 1);
lcd.print("ZL2CTM");
lcd.setCursor(11, 1);
if (SMeterAverage <= 850)
lcd.print("S3 ");
if ((SMeterAverage > 851) && (SMeterAverage <= 853))
lcd.print("S4 ");
if ((SMeterAverage > 854) && (SMeterAverage <= 864))
lcd.print("S5 ");
if ((SMeterAverage > 865) && (SMeterAverage <= 904))
lcd.print("S6 ");
if ((SMeterAverage > 905) && (SMeterAverage <= 989))
lcd.print("S7 ");
if ((SMeterAverage > 990) && (SMeterAverage <= 1010))
lcd.print("S8 ");
if (SMeterAverage > 1011)
lcd.print("S9 ");
if (radix != oldradix) // stops radix display flashing/blinking on freq change
{
lcd.setCursor(9, 0);
lcd.print(" ");
lcd.setCursor(9, 0);
if (radix == 1)
lcd.print(" 1 Hz");
if (radix == 10)
lcd.print(" 10 Hz");
if (radix == 100)
lcd.print(" 100 Hz");
if (radix == 1000)
lcd.print(" 1 kHz");
if (radix == 10000)
lcd.print(" 10 kHz");
if (radix == 100000)
lcd.print("100 kHz");
oldradix = radix;
}
}
void SendFrequency()
{
si5351.set_freq(((BFO_freq - freq) * 100ULL), SI5351_CLK0);
si5351.set_freq((BFO_freq * 100ULL), SI5351_CLK2);
}
Sunday, 11 November 2018
Subscribe to:
Posts (Atom)