Friday 21 June 2019

Homebrew 80/40/20m SSB SDR Phasing Rig

Please see my YouTube channel for accompanying/explanation videos.

https://www.youtube.com/channel/UCSNPW3_gzuMJcX_ErBZTv2g






Antenna RF amplifer


Final configuration




Test Software for Phasing technique.

// Libraries
#include <Wire.h>                          // I2C comms library
#include <si5351.h>                        // Si5351Jason library
#include "ILI9341_t3.h"
#include <Audio.h>                         // Teensy audio library

#define NO_HILBERT_COEFFS 100               // Used to define the Hilbert transform filter arrays. More typical than 'const int'.

// Define Constants and Vaviables
static const long bandStart = 1000000;     // start of HF band
static const long bandEnd =   30000000;    // end of HF band
static const long bandInit =  3690000;     // where to initially set the frequency
volatile long oldfreq = 0;
volatile long freq = bandInit ;
volatile long radix = 1000;                // how much to change the frequency. Pushing the rotary encoder switch will change this.
volatile long oldradix = 1;
volatile int updatedisplay = 0;
volatile int mode = 1;                     // 1 = LSB, 0 = USB
volatile int oldmode = 0;
volatile int Even_Divisor = 0;
volatile int oldEven_Divisor = 0;

// Audio panel gains
static const int Linein_Gain = 10;          // Range is 0-15. 0 = 3.12 Vp-p, 15 = 0.24 Vp-p. Default = 5

// Rotary Encoder
static const int EncoderPushButton = 39;
static const int rotBPin = 36;
static const int rotAPin = 35;
static const int ModeSwitch = 24;
static const int PTTSwitch = 25;
volatile int rotState = 0;
volatile int rotAval = 1;
volatile int rotBval = 1;
volatile int rotAcc = 0;

// For optimized ILI9341_t3 library
#define TFT_DC    20
#define TFT_CS    21
#define TFT_RST   255  // 255 = unused, connect to 3.3V
#define TFT_MOSI  7
#define TFT_SCLK  14
#define TFT_MISO  12

// Iowa Hills Hilbert transform filter coefficients
const short Hilbert_Plus_45_Coeffs[NO_HILBERT_COEFFS] = {
(short)(32768 * 483.9743406915770E-9),
(short)(32768 * 1.866685817417670E-6),
(short)(32768 * 4.392570072495770E-6),
(short)(32768 * 8.820636712774380E-6),
(short)(32768 * 0.000016184764415848),
(short)(32768 * 0.000027249288101724),
(short)(32768 * 0.000041920439805110),
(short)(32768 * 0.000059016345361008),
(short)(32768 * 0.000076756191268614),
(short)(32768 * 0.000094055071776657),
(short)(32768 * 0.000112261583662573),
(short)(32768 * 0.000136518354793722),
(short)(32768 * 0.000175696544399550),
(short)(32768 * 0.000240067250940666),
(short)(32768 * 0.000336609833081347),
(short)(32768 * 0.000462990951098187),
(short)(32768 * 0.000602421399161912),
(short)(32768 * 0.000722301614841713),
(short)(32768 * 0.000779305755125654),
(short)(32768 * 0.000732056920489209),
(short)(32768 * 0.000559948250896998),
(short)(32768 * 0.000283585816755988),
(short)(32768 * -0.000020215761694049),
(short)(32768 * -0.000216819118897174),
(short)(32768 * -0.000131758715732279),
(short)(32768 * 0.000409948902196685),
(short)(32768 * 0.001528130963104050),
(short)(32768 * 0.003227564604759798),
(short)(32768 * 0.005351504118228274),
(short)(32768 * 0.007567804706902511),
(short)(32768 * 0.009402820162611196),
(short)(32768 * 0.010328512135999630),
(short)(32768 * 0.009894246835039863),
(short)(32768 * 0.007879714166593881),
(short)(32768 * 0.004433421126740721),
(short)(32768 * 0.000156366633965185),
(short)(32768 * -0.003904389468521576),
(short)(32768 * -0.006371988171406650),
(short)(32768 * -0.005761887634323113),
(short)(32768 * -0.000778938771957753),
(short)(32768 * 0.009365085367419172),
(short)(32768 * 0.024681757404317366),
(short)(32768 * 0.044251382160327521),
(short)(32768 * 0.066233642104189930),
(short)(32768 * 0.088062621169129954),
(short)(32768 * 0.106806616459214951),
(short)(32768 * 0.119635362035632908),
(short)(32768 * 0.124309482163432433),
(short)(32768 * 0.119596382589365807),
(short)(32768 * 0.105526834497225247),
(short)(32768 * 0.083435851600156402),
(short)(32768 * 0.055774084237545388),
(short)(32768 * 0.025722508803868269),
(short)(32768 * -0.003316774367731974),
(short)(32768 * -0.028256325810852603),
(short)(32768 * -0.046784860848984686),
(short)(32768 * -0.057671422122216751),
(short)(32768 * -0.060863961385426720),
(short)(32768 * -0.057377469068775784),
(short)(32768 * -0.049008885222883866),
(short)(32768 * -0.037947605693328487),
(short)(32768 * -0.026365178611104038),
(short)(32768 * -0.016063741251826878),
(short)(32768 * -0.008242320709669780),
(short)(32768 * -0.003409329314875374),
(short)(32768 * -0.001436295024424050),
(short)(32768 * -0.001719754923178513),
(short)(32768 * -0.003400970055132929),
(short)(32768 * -0.005589187214751837),
(short)(32768 * -0.007542651980327935),
(short)(32768 * -0.008778747041127889),
(short)(32768 * -0.009105231860961261),
(short)(32768 * -0.008583286966676333),
(short)(32768 * -0.007445876442758468),
(short)(32768 * -0.005999873442098177),
(short)(32768 * -0.004537732597630097),
(short)(32768 * -0.003276341625911221),
(short)(32768 * -0.002330120643710241),
(short)(32768 * -0.001715559019593159),
(short)(32768 * -0.001377498498508186),
(short)(32768 * -0.001224659509681699),
(short)(32768 * -0.001162953813794283),
(short)(32768 * -0.001118850197066992),
(short)(32768 * -0.001049829425495061),
(short)(32768 * -0.000943240226180188),
(short)(32768 * -0.000807608474652057),
(short)(32768 * -0.000661296218869203),
(short)(32768 * -0.000522622836450865),
(short)(32768 * -0.000403818527830429),
(short)(32768 * -0.000309261220275339),
(short)(32768 * -0.000236981246010256),
(short)(32768 * -0.000181726899678497),
(short)(32768 * -0.000137960767232952),
(short)(32768 * -0.000101749677323657),
(short)(32768 * -0.000071268112804006),
(short)(32768 * -0.000046246069278189),
(short)(32768 * -0.000026984224473470),
(short)(32768 * -0.000013519855860183),
(short)(32768 * -5.268419079329310E-6),
(short)(32768 * -1.152120275972750E-6)
};

// Iowa Hills Hilbert transform filter coefficients
const short Hilbert_Minus_45_Coeffs[NO_HILBERT_COEFFS] = {
(short)(32768 * -1.152120275972720E-6),
(short)(32768 * -5.268419079329100E-6),
(short)(32768 * -0.000013519855860182),
(short)(32768 * -0.000026984224473469),
(short)(32768 * -0.000046246069278187),
(short)(32768 * -0.000071268112804004),
(short)(32768 * -0.000101749677323656),
(short)(32768 * -0.000137960767232950),
(short)(32768 * -0.000181726899678496),
(short)(32768 * -0.000236981246010254),
(short)(32768 * -0.000309261220275334),
(short)(32768 * -0.000403818527830420),
(short)(32768 * -0.000522622836450852),
(short)(32768 * -0.000661296218869189),
(short)(32768 * -0.000807608474652046),
(short)(32768 * -0.000943240226180185),
(short)(32768 * -0.001049829425495072),
(short)(32768 * -0.001118850197067017),
(short)(32768 * -0.001162953813794315),
(short)(32768 * -0.001224659509681719),
(short)(32768 * -0.001377498498508169),
(short)(32768 * -0.001715559019593075),
(short)(32768 * -0.002330120643710066),
(short)(32768 * -0.003276341625910951),
(short)(32768 * -0.004537732597629757),
(short)(32768 * -0.005999873442097817),
(short)(32768 * -0.007445876442758181),
(short)(32768 * -0.008583286966676212),
(short)(32768 * -0.009105231860961396),
(short)(32768 * -0.008778747041128323),
(short)(32768 * -0.007542651980328638),
(short)(32768 * -0.005589187214752684),
(short)(32768 * -0.003400970055133710),
(short)(32768 * -0.001719754923178943),
(short)(32768 * -0.001436295024423829),
(short)(32768 * -0.003409329314874256),
(short)(32768 * -0.008242320709667652),
(short)(32768 * -0.016063741251823811),
(short)(32768 * -0.026365178611100354),
(short)(32768 * -0.037947605693324706),
(short)(32768 * -0.049008885222880681),
(short)(32768 * -0.057377469068773987),
(short)(32768 * -0.060863961385426962),
(short)(32768 * -0.057671422122219533),
(short)(32768 * -0.046784860848990188),
(short)(32768 * -0.028256325810860565),
(short)(32768 * -0.003316774367741772),
(short)(32768 * 0.025722508803857579),
(short)(32768 * 0.055774084237534945),
(short)(32768 * 0.083435851600147395),
(short)(32768 * 0.105526834497218600),
(short)(32768 * 0.119596382589362227),
(short)(32768 * 0.124309482163432142),
(short)(32768 * 0.119635362035635753),
(short)(32768 * 0.106806616459220294),
(short)(32768 * 0.088062621169136893),
(short)(32768 * 0.066233642104197507),
(short)(32768 * 0.044251382160334737),
(short)(32768 * 0.024681757404323448),
(short)(32768 * 0.009365085367423625),
(short)(32768 * -0.000778938771955104),
(short)(32768 * -0.005761887634322139),
(short)(32768 * -0.006371988171407000),
(short)(32768 * -0.003904389468522771),
(short)(32768 * 0.000156366633963640),
(short)(32768 * 0.004433421126739255),
(short)(32768 * 0.007879714166592786),
(short)(32768 * 0.009894246835039278),
(short)(32768 * 0.010328512135999562),
(short)(32768 * 0.009402820162611529),
(short)(32768 * 0.007567804706903086),
(short)(32768 * 0.005351504118228925),
(short)(32768 * 0.003227564604760380),
(short)(32768 * 0.001528130963104480),
(short)(32768 * 0.000409948902196933),
(short)(32768 * -0.000131758715732195),
(short)(32768 * -0.000216819118897210),
(short)(32768 * -0.000020215761694147),
(short)(32768 * 0.000283585816755878),
(short)(32768 * 0.000559948250896909),
(short)(32768 * 0.000732056920489157),
(short)(32768 * 0.000779305755125639),
(short)(32768 * 0.000722301614841724),
(short)(32768 * 0.000602421399161936),
(short)(32768 * 0.000462990951098213),
(short)(32768 * 0.000336609833081367),
(short)(32768 * 0.000240067250940678),
(short)(32768 * 0.000175696544399555),
(short)(32768 * 0.000136518354793723),
(short)(32768 * 0.000112261583662573),
(short)(32768 * 0.000094055071776658),
(short)(32768 * 0.000076756191268616),
(short)(32768 * 0.000059016345361010),
(short)(32768 * 0.000041920439805112),
(short)(32768 * 0.000027249288101726),
(short)(32768 * 0.000016184764415849),
(short)(32768 * 8.820636712774440E-6),
(short)(32768 * 4.392570072495580E-6),
(short)(32768 * 1.866685817417500E-6),
(short)(32768 * 483.9743406915230E-9)
};


// Instantiate the Objects
ILI9341_t3 tft = ILI9341_t3(TFT_CS, TFT_DC, TFT_RST, TFT_MOSI, TFT_SCLK, TFT_MISO);
Si5351 si5351;                            // Name for the Si5351 DDS
AudioControlSGTL5000    audioShield;      // Name for the Teensy audio CODEC on the audio shield

// Audio shield
AudioInputI2S           audioInput;                                           // Name for the input to the audio shield (either line-in or mic)
AudioOutputI2S          audioOutput;                                          // Name for the output of the audio shield (either headphones or line-out)
// Receiver
AudioFilterFIR          RX_Hilbert_Plus_45;                                   // Name for the RX +45 Hilbert transform
AudioFilterFIR          RX_Hilbert_Minus_45;                                  // Name for the RX +45 Hilbert transform
AudioMixer4             RX_Summer;                                            // Name for the RX summer

// Audio connections
AudioConnection         patchCord5(audioInput, 0, RX_Hilbert_Plus_45, 0);               // Left channel in Hilbert transform +45
AudioConnection         patchCord10(audioInput, 1, RX_Hilbert_Minus_45, 0);             // Right channel in Hilbert transform -45

AudioConnection         patchCord15(RX_Hilbert_Plus_45, 0, RX_Summer, 0);               // Hilbert transform +45 to receiver summer
AudioConnection         patchCord20(RX_Hilbert_Minus_45, 0, RX_Summer, 1);              // Hilbert transform -45 to receiver summer

AudioConnection         patchCord25(RX_Summer, 0, audioOutput, 0);
AudioConnection         patchCord30(RX_Summer, 0, audioOutput, 1);

void setup()
{
  // Setup screen
  tft.begin();
  tft.setRotation(1);
  tft.fillScreen(ILI9341_BLACK);
  tft.drawRect(31, 0, 257, 37, ILI9341_YELLOW);
  tft.drawRect(31, 36, 257, 103, ILI9341_YELLOW);
  tft.drawRect(31, 138, 257, 102, ILI9341_YELLOW);

  // Setup input switches
  pinMode(rotAPin, INPUT);
  pinMode(rotBPin, INPUT);
  pinMode(EncoderPushButton, INPUT);
  pinMode(ModeSwitch, INPUT);
  digitalWrite(rotAPin, HIGH);
  digitalWrite(rotBPin, HIGH);
  digitalWrite(EncoderPushButton, HIGH);
  digitalWrite(ModeSwitch, HIGH);

  // Setup interrupt pins
  attachInterrupt(digitalPinToInterrupt(rotAPin), ISRrotAChange, CHANGE);
  attachInterrupt(digitalPinToInterrupt(rotBPin), ISRrotBChange, CHANGE);

  // Initialize the DDS
  si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);             // 25MHz crystal = 0, 27MHz crystal = 27000000
  si5351.set_correction(62799, SI5351_PLL_INPUT_XO);      // Set to specific Si5351 calibration number
  si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_6MA);
  si5351.drive_strength(SI5351_CLK1, SI5351_DRIVE_6MA);

  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK0);
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK1);
  si5351.set_phase(SI5351_CLK0, 0);
  si5351.set_phase(SI5351_CLK1, Even_Divisor);
  si5351.pll_reset(SI5351_PLLA);

  // Setup the audio shield
  AudioNoInterrupts();
  AudioMemory(12);
  audioShield.enable();
  AudioInterrupts();

  // Setup transceiver mode
  Turn_On_Receiver();
  UpdateDisplay();
}

void loop()
{
  if (freq != oldfreq)                // Check to see if the frequency has changed. If so, update everything.
  {
    EvenDivisor();
    UpdateDisplay();
    SendFrequency();
    oldfreq = freq;
  }

  if (digitalRead(EncoderPushButton) == LOW)    // Update cursor, but also stop it from flickering
  {
    delay(50);
    while (digitalRead(EncoderPushButton) == LOW)
    {
      if (updatedisplay == 1)
      {
        UpdateDisplay();
        updatedisplay = 0;
      }
    }
    delay(50);
  }
}


void Turn_On_Receiver()
{
  AudioNoInterrupts();
  audioShield.inputSelect(AUDIO_INPUT_LINEIN);
  audioShield.lineInLevel(Linein_Gain);
  audioShield.unmuteHeadphone();                                        // Output to the audio amplifier
  audioShield.volume(0.7);
  RX_Hilbert_Plus_45.begin(Hilbert_Plus_45_Coeffs, NO_HILBERT_COEFFS);
  RX_Hilbert_Minus_45.begin(Hilbert_Minus_45_Coeffs, NO_HILBERT_COEFFS);
  RX_Summer.gain(0, 1);
  RX_Summer.gain(1, -1);
  AudioInterrupts();
}


// Interrupt routines
void ISRrotAChange()
{
  if (digitalRead(rotAPin))
  {
    rotAval = 1;
    UpdateRot();
  }
  else
  {
    rotAval = 0;
    UpdateRot();
  }
}


void ISRrotBChange()
{
  if (digitalRead(rotBPin))
  {
    rotBval = 1;
    UpdateRot();
  }
  else
  {
    rotBval = 0;
    UpdateRot();
  }
}


void UpdateRot()
{
  switch (rotState)
  {

    case 0:                                         // Idle state, look for direction
      if (!rotBval)
        rotState = 1;                               // CW 1
      if (!rotAval)
        rotState = 11;                              // CCW 1
      break;

    case 1:                                         // CW, wait for A low while B is low
      if (!rotBval)
      {
        if (!rotAval)
        {
          // either increment radixindex or freq
          if (digitalRead(EncoderPushButton) == LOW)
          {
            updatedisplay = 1;
            if (radix == 1000000)
              radix = 100000;
            else if (radix == 100000)
              radix = 10000;
            else if (radix == 10000)
              radix = 1000;
            else if (radix == 1000)
              radix = 100;
            else if (radix == 100)
              radix = 10;
            else if (radix == 10)
              radix = 1;
            else
              radix = 1000000;
          }
          else
          {
            freq = (freq + radix);
            if (freq > bandEnd)
              freq = bandEnd;
          }
          rotState = 2;                             // CW 2
        }
      }
      else if (rotAval)
        rotState = 0;                               // It was just a glitch on B, go back to start
      break;

    case 2:                                         // CW, wait for B high
      if (rotBval)
        rotState = 3;                               // CW 3
      break;

    case 3:                                         // CW, wait for A high
      if (rotAval)
        rotState = 0;                               // back to idle (detent) state
      break;

    case 11:                                        // CCW, wait for B low while A is low
      if (!rotAval)
      {
        if (!rotBval)
        {
          // either decrement radixindex or freq
          if (digitalRead(EncoderPushButton) == LOW)
          {
            updatedisplay = 1;
            if (radix == 1)
              radix = 10;
            else if (radix == 10)
              radix = 100;
            else if (radix == 100)
              radix = 1000;
            else if (radix == 1000)
              radix = 10000;
            else if (radix == 10000)
              radix = 100000;
            else if (radix == 100000)
              radix = 1000000;
            else
              radix = 1;
          }
          else
          {
            freq = (freq - radix);
            if (freq < bandStart)
              freq = bandStart;
          }
          rotState = 12;                            // CCW 2
        }
      }
      else if (rotBval)
        rotState = 0;                               // It was just a glitch on A, go back to start
      break;

    case 12:                                        // CCW, wait for A high
      if (rotAval)
        rotState = 13;                              // CCW 3
      break;

    case 13:                                        // CCW, wait for B high
      if (rotBval)
        rotState = 0;                               // back to idle (detent) state
      break;
  }
}


void UpdateDisplay()
{
  tft.setTextSize(2);
  tft.setCursor(50, 10);
  tft.setTextColor(ILI9341_BLACK);
  tft.println(oldfreq);

  tft.setCursor(50, 10);
  tft.setTextColor(ILI9341_WHITE);
  tft.println(freq);

  if (radix != oldradix)                          // stops radix display flashing/blinking on freq change
  {
    tft.setCursor(170, 10);
    tft.setTextColor(ILI9341_BLACK);
    if (oldradix == 1)
      tft.print("   1 Hz");
    if (oldradix == 10)
      tft.print("  10 Hz");
    if (oldradix == 100)
      tft.print(" 100 Hz");
    if (oldradix == 1000)
      tft.print("  1 kHz");
    if (oldradix == 10000)
      tft.print(" 10 kHz");
    if (oldradix == 100000)
      tft.print("100 kHz");
    if (oldradix == 1000000)
      tft.print("  1 MHz");

    tft.setCursor(170, 10);
    tft.setTextColor(ILI9341_WHITE);
    if (radix == 1)
      tft.print("   1 Hz");
    if (radix == 10)
      tft.print("  10 Hz");
    if (radix == 100)
      tft.print(" 100 Hz");
    if (radix == 1000)
      tft.print("  1 kHz");
    if (radix == 10000)
      tft.print(" 10 kHz");
    if (radix == 100000)
      tft.print("100 kHz");
    if (radix == 1000000)
      tft.print("  1 MHz");

    oldradix = radix;
  }
}


void EvenDivisor()
{
  if (freq < 6850000)
  {
    Even_Divisor = 126;
  }
  if ((freq >= 6850000) && (freq < 9500000))
  {
    Even_Divisor = 88;
  }
  if ((freq >= 9500000) && (freq < 13600000))
  {
    Even_Divisor = 64;
  }
  if ((freq >= 13600000) && (freq < 17500000))
  {
    Even_Divisor = 44;
  }
  if ((freq >= 17500000) && (freq < 25000000))
  {
    Even_Divisor = 34;
  }
  if ((freq >= 25000000) && (freq < 36000000))
  {
    Even_Divisor = 24;
  }
  if ((freq >= 36000000) && (freq < 45000000)) {
    Even_Divisor = 18;
  }
  if ((freq >= 45000000) && (freq < 60000000)) {
    Even_Divisor = 14;
  }
  if ((freq >= 60000000) && (freq < 80000000)) {
    Even_Divisor = 10;
  }
  if ((freq >= 80000000) && (freq < 100000000)) {
    Even_Divisor = 8;
  }
  if ((freq >= 100000000) && (freq < 146600000)) {
    Even_Divisor = 6;
  }
  if ((freq >= 150000000) && (freq < 220000000)) {
    Even_Divisor = 4;
  }
}


void SendFrequency()
{
  //freq = freq + 10;
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK0);
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK1);
  si5351.set_phase(SI5351_CLK0, 0);
  si5351.set_phase(SI5351_CLK1, Even_Divisor);
  if (Even_Divisor != oldEven_Divisor)
  {
    si5351.pll_reset(SI5351_PLLA);
    oldEven_Divisor = Even_Divisor;
  }
}

***********************************************

Test software for Weaver technique.

// Libraries
#include <Wire.h>                          // I2C comms library
#include <si5351.h>                        // Si5351Jason library
#include "ILI9341_t3.h"
#include <Audio.h>                         // Teensy audio library

#define NO_LPF_COEFFS 100               // Used to define the Hilbert transform filter arrays. More typical than 'const int'.
int Osc_freq = 1350;


// Define Constants and Vaviables
static const long bandStart = 1000000;     // start of HF band
static const long bandEnd =   30000000;    // end of HF band
static const long bandInit =  3690000 - 1350;     // where to initially set the frequency
volatile long oldfreq = 0;
volatile long freq = bandInit;
volatile long dispfreq = 0;
volatile long olddispfreq = 0;
volatile long radix = 1000;                // how much to change the frequency. Pushing the rotary encoder switch will change this.
volatile long oldradix = 1;
volatile int updatedisplay = 0;
volatile int mode = 1;                     // 1 = LSB, 0 = USB
volatile int oldmode = 0;
volatile int Even_Divisor = 0;
volatile int oldEven_Divisor = 0;


// Audio panel gains
static const int Linein_Gain = 10;          // Range is 0-15. 0 = 3.12 Vp-p, 15 = 0.24 Vp-p. Default = 5

// Rotary Encoder
static const int EncoderPushButton = 39;
static const int rotBPin = 36;
static const int rotAPin = 35;
static const int ModeSwitch = 24;
static const int PTTSwitch = 25;
volatile int rotState = 0;
volatile int rotAval = 1;
volatile int rotBval = 1;
volatile int rotAcc = 0;

// For optimized ILI9341_t3 library
#define TFT_DC    20
#define TFT_CS    21
#define TFT_RST   255  // 255 = unused, connect to 3.3V
#define TFT_MOSI  7
#define TFT_SCLK  14
#define TFT_MISO  12


// Iowa Hills LPF filter coefficients
const short LPF_Coeffs[NO_LPF_COEFFS] = {
(short)(32768 * 306.4951185627353420E-9),
(short)(32768 * 2.389304478278580830E-6),
(short)(32768 * 7.113585052311595550E-6),
(short)(32768 * 14.72828307076125930E-6),
(short)(32768 * 24.58848420405347920E-6),
(short)(32768 * 35.02666821312011080E-6),
(short)(32768 * 43.43839783397800150E-6),
(short)(32768 * 46.61576513715636590E-6),
(short)(32768 * 41.31600135178678100E-6),
(short)(32768 * 24.99939715244948960E-6),
(short)(32768 * -3.381010660280591830E-6),
(short)(32768 * -42.69541258485239870E-6),
(short)(32768 * -89.23441801688076680E-6),
(short)(32768 * -136.7515827038860440E-6),
(short)(32768 * -177.0704045420265800E-6),
(short)(32768 * -201.2975885521037750E-6),
(short)(32768 * -201.5817136692013490E-6),
(short)(32768 * -173.2410096718713530E-6),
(short)(32768 * -116.9727242504059600E-6),
(short)(32768 * -40.76876611355810100E-6),
(short)(32768 * 38.88327362518843700E-6),
(short)(32768 * 96.92273299774292640E-6),
(short)(32768 * 101.0929496871475240E-6),
(short)(32768 * 14.95903728424654490E-6),
(short)(32768 * -197.4484620824715080E-6),
(short)(32768 * -565.6166584117947880E-6),
(short)(32768 * -0.001105659124309112),
(short)(32768 * -0.001813271033445281),
(short)(32768 * -0.002657413489625704),
(short)(32768 * -0.003575681889777568),
(short)(32768 * -0.004472272286104596),
(short)(32768 * -0.005219295852277327),
(short)(32768 * -0.005661909790021988),
(short)(32768 * -0.005627354513012373),
(short)(32768 * -0.004937547773786580),
(short)(32768 * -0.003424434146231942),
(short)(32768 * -946.8768746362549110E-6),
(short)(32768 * 0.002592437620492790),
(short)(32768 * 0.007231787528579316),
(short)(32768 * 0.012938601156477677),
(short)(32768 * 0.019602556730010448),
(short)(32768 * 0.027034742068844295),
(short)(32768 * 0.034973496032183256),
(short)(32768 * 0.043096926615698458),
(short)(32768 * 0.051041434503589389),
(short)(32768 * 0.058424937851007025),
(short)(32768 * 0.064872965661608481),
(short)(32768 * 0.070045425749411874),
(short)(32768 * 0.073661704425816404),
(short)(32768 * 0.075521841389624714),
(short)(32768 * 0.075521841389624714),
(short)(32768 * 0.073661704425816404),
(short)(32768 * 0.070045425749411874),
(short)(32768 * 0.064872965661608481),
(short)(32768 * 0.058424937851007025),
(short)(32768 * 0.051041434503589389),
(short)(32768 * 0.043096926615698458),
(short)(32768 * 0.034973496032183256),
(short)(32768 * 0.027034742068844295),
(short)(32768 * 0.019602556730010448),
(short)(32768 * 0.012938601156477677),
(short)(32768 * 0.007231787528579316),
(short)(32768 * 0.002592437620492790),
(short)(32768 * -946.8768746362549110E-6),
(short)(32768 * -0.003424434146231942),
(short)(32768 * -0.004937547773786580),
(short)(32768 * -0.005627354513012373),
(short)(32768 * -0.005661909790021988),
(short)(32768 * -0.005219295852277327),
(short)(32768 * -0.004472272286104596),
(short)(32768 * -0.003575681889777568),
(short)(32768 * -0.002657413489625704),
(short)(32768 * -0.001813271033445281),
(short)(32768 * -0.001105659124309112),
(short)(32768 * -565.6166584117947880E-6),
(short)(32768 * -197.4484620824715080E-6),
(short)(32768 * 14.95903728424654490E-6),
(short)(32768 * 101.0929496871475240E-6),
(short)(32768 * 96.92273299774292640E-6),
(short)(32768 * 38.88327362518843700E-6),
(short)(32768 * -40.76876611355810100E-6),
(short)(32768 * -116.9727242504059600E-6),
(short)(32768 * -173.2410096718713530E-6),
(short)(32768 * -201.5817136692013490E-6),
(short)(32768 * -201.2975885521037750E-6),
(short)(32768 * -177.0704045420265800E-6),
(short)(32768 * -136.7515827038860440E-6),
(short)(32768 * -89.23441801688076680E-6),
(short)(32768 * -42.69541258485239870E-6),
(short)(32768 * -3.381010660280591830E-6),
(short)(32768 * 24.99939715244948960E-6),
(short)(32768 * 41.31600135178678100E-6),
(short)(32768 * 46.61576513715636590E-6),
(short)(32768 * 43.43839783397800150E-6),
(short)(32768 * 35.02666821312011080E-6),
(short)(32768 * 24.58848420405347920E-6),
(short)(32768 * 14.72828307076125930E-6),
(short)(32768 * 7.113585052311595550E-6),
(short)(32768 * 2.389304478278580830E-6),
(short)(32768 * 306.4951185627353420E-9)
};

// Instantiate the Objects
ILI9341_t3 tft = ILI9341_t3(TFT_CS, TFT_DC, TFT_RST, TFT_MOSI, TFT_SCLK, TFT_MISO);
Si5351 si5351;                            // Name for the Si5351 DDS
AudioControlSGTL5000    audioShield;      // Name for the Teensy audio CODEC on the audio shield

// Audio shield
AudioInputI2S           audioInput;                                           // Name for the input to the audio shield (either line-in or mic)
AudioOutputI2S          audioOutput;                                          // Name for the output of the audio shield (either headphones or line-out)
// Receiver
AudioFilterFIR          RX_I_LPF;                                             // Name for the RX LPF
AudioFilterFIR          RX_Q_LPF;                                             // Name for the RX LPF
AudioEffectMultiply     RX_I_Mixer;
AudioEffectMultiply     RX_Q_Mixer;
AudioSynthWaveform      RX_I_Osc;
AudioSynthWaveform      RX_Q_Osc;
AudioMixer4             RX_Summer;                                            // Name for the RX summer

//Audio connections
AudioConnection         patchCord5(audioInput, 0, RX_I_LPF, 0);
AudioConnection         patchCord10(audioInput, 1, RX_Q_LPF, 0);

AudioConnection         patchCord15(RX_I_LPF, 0, RX_I_Mixer, 0);
AudioConnection         patchCord20(RX_Q_LPF, 0, RX_Q_Mixer, 0);

AudioConnection         patchCord25(RX_I_Osc, 0, RX_I_Mixer, 1);              // Left channel in Hilbert transform +45
AudioConnection         patchCord30(RX_Q_Osc, 0, RX_Q_Mixer, 1);              // Right channel in Hilbert transform -45

AudioConnection         patchCord35(RX_I_Mixer, 0, RX_Summer, 0);             // Hilbert transform +45 to receiver summer
AudioConnection         patchCord40(RX_Q_Mixer, 0, RX_Summer, 1);             // Hilbert transform -45 to receiver summer

AudioConnection         patchCord45(RX_Summer, 0, audioOutput, 0);
AudioConnection         patchCord50(RX_Summer, 0, audioOutput, 1);


void setup()
{
  // Setup screen
  tft.begin();
  tft.setRotation(1);
  tft.fillScreen(ILI9341_BLACK);
  tft.drawRect(31, 0, 257, 37, ILI9341_YELLOW);
  tft.drawRect(31, 36, 257, 103, ILI9341_YELLOW);
  tft.drawRect(31, 138, 257, 102, ILI9341_YELLOW);

  // Setup input switches
  pinMode(rotAPin, INPUT);
  pinMode(rotBPin, INPUT);
  pinMode(EncoderPushButton, INPUT);
  pinMode(ModeSwitch, INPUT);
  digitalWrite(rotAPin, HIGH);
  digitalWrite(rotBPin, HIGH);
  digitalWrite(EncoderPushButton, HIGH);
  digitalWrite(ModeSwitch, HIGH);

  // Setup interrupt pins
  attachInterrupt(digitalPinToInterrupt(rotAPin), ISRrotAChange, CHANGE);
  attachInterrupt(digitalPinToInterrupt(rotBPin), ISRrotBChange, CHANGE);

  // Initialize the DDS
  si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);             // 25MHz crystal = 0, 27MHz crystal = 27000000
  si5351.set_correction(62799, SI5351_PLL_INPUT_XO);      // Set to specific Si5351 calibration number
  si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_6MA);
  si5351.drive_strength(SI5351_CLK1, SI5351_DRIVE_6MA);

  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK0);
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK1);
  si5351.set_phase(SI5351_CLK0, 0);
  si5351.set_phase(SI5351_CLK1, Even_Divisor);
  si5351.pll_reset(SI5351_PLLA);

  // Setup the audio shield
  AudioNoInterrupts();
  AudioMemory(16);
  audioShield.enable();
  AudioInterrupts();

  // Setup transceiver mode
  Turn_On_Receiver();
  UpdateDisplay();
}

void loop()
{
  if (freq != oldfreq)                // Check to see if the frequency has changed. If so, update everything.
  {
    EvenDivisor();
    SendFrequency();
    UpdateDisplay();
    oldfreq = freq;
  }

  if (digitalRead(EncoderPushButton) == LOW)    // Update cursor, but also stop it from flickering
  {
    delay(50);
    while (digitalRead(EncoderPushButton) == LOW)
    {
      if (updatedisplay == 1)
      {
        UpdateDisplay();
        updatedisplay = 0;
      }
    }
    delay(50);
  }
}


void Turn_On_Receiver()
{
  AudioNoInterrupts();
  audioShield.inputSelect(AUDIO_INPUT_LINEIN);
  audioShield.lineInLevel(Linein_Gain);
  audioShield.unmuteHeadphone();                                        // Output to the audio amplifier
  audioShield.volume(0.7);
  RX_I_LPF.begin(LPF_Coeffs, NO_LPF_COEFFS);
  RX_Q_LPF.begin(LPF_Coeffs, NO_LPF_COEFFS);
  RX_I_Osc.frequency(Osc_freq);
  RX_I_Osc.amplitude(1);
  RX_I_Osc.phase(0);
  RX_Q_Osc.frequency(Osc_freq);
  RX_Q_Osc.amplitude(1);
  RX_Q_Osc.phase(90);
  RX_Summer.gain(0, 1);
  RX_Summer.gain(1, -1);
  AudioInterrupts();
}


// Interrupt routines
void ISRrotAChange()
{
  if (digitalRead(rotAPin))
  {
    rotAval = 1;
    UpdateRot();
  }
  else
  {
    rotAval = 0;
    UpdateRot();
  }
}


void ISRrotBChange()
{
  if (digitalRead(rotBPin))
  {
    rotBval = 1;
    UpdateRot();
  }
  else
  {
    rotBval = 0;
    UpdateRot();
  }
}


void UpdateRot()
{
  switch (rotState)
  {

    case 0:                                         // Idle state, look for direction
      if (!rotBval)
        rotState = 1;                               // CW 1
      if (!rotAval)
        rotState = 11;                              // CCW 1
      break;

    case 1:                                         // CW, wait for A low while B is low
      if (!rotBval)
      {
        if (!rotAval)
        {
          // either increment radixindex or freq
          if (digitalRead(EncoderPushButton) == LOW)
          {
            updatedisplay = 1;
            if (radix == 1000000)
              radix = 100000;
            else if (radix == 100000)
              radix = 10000;
            else if (radix == 10000)
              radix = 1000;
            else if (radix == 1000)
              radix = 100;
            else if (radix == 100)
              radix = 10;
            else if (radix == 10)
              radix = 1;
            else
              radix = 1000000;
          }
          else
          {
            freq = (freq + radix);
            if (freq > bandEnd)
              freq = bandEnd;
          }
          rotState = 2;                             // CW 2
        }
      }
      else if (rotAval)
        rotState = 0;                               // It was just a glitch on B, go back to start
      break;

    case 2:                                         // CW, wait for B high
      if (rotBval)
        rotState = 3;                               // CW 3
      break;

    case 3:                                         // CW, wait for A high
      if (rotAval)
        rotState = 0;                               // back to idle (detent) state
      break;

    case 11:                                        // CCW, wait for B low while A is low
      if (!rotAval)
      {
        if (!rotBval)
        {
          // either decrement radixindex or freq
          if (digitalRead(EncoderPushButton) == LOW)
          {
            updatedisplay = 1;
            if (radix == 1)
              radix = 10;
            else if (radix == 10)
              radix = 100;
            else if (radix == 100)
              radix = 1000;
            else if (radix == 1000)
              radix = 10000;
            else if (radix == 10000)
              radix = 100000;
            else if (radix == 100000)
              radix = 1000000;
            else
              radix = 1;
          }
          else
          {
            freq = (freq - radix);
            if (freq < bandStart)
              freq = bandStart;
          }
          rotState = 12;                            // CCW 2
        }
      }
      else if (rotBval)
        rotState = 0;                               // It was just a glitch on A, go back to start
      break;

    case 12:                                        // CCW, wait for A high
      if (rotAval)
        rotState = 13;                              // CCW 3
      break;

    case 13:                                        // CCW, wait for B high
      if (rotBval)
        rotState = 0;                               // back to idle (detent) state
      break;
  }
}


void UpdateDisplay()
{
  dispfreq = freq + 1350;

  tft.setTextSize(2);
  tft.setCursor(50, 10);
  tft.setTextColor(ILI9341_BLACK);
  tft.println(olddispfreq);

  tft.setCursor(50, 10);
  tft.setTextColor(ILI9341_WHITE);
  tft.println(dispfreq);

  olddispfreq = dispfreq;

  if (radix != oldradix)                          // stops radix display flashing/blinking on freq change
  {
    tft.setCursor(170, 10);
    tft.setTextColor(ILI9341_BLACK);
    if (oldradix == 1)
      tft.print("   1 Hz");
    if (oldradix == 10)
      tft.print("  10 Hz");
    if (oldradix == 100)
      tft.print(" 100 Hz");
    if (oldradix == 1000)
      tft.print("  1 kHz");
    if (oldradix == 10000)
      tft.print(" 10 kHz");
    if (oldradix == 100000)
      tft.print("100 kHz");
    if (oldradix == 1000000)
      tft.print("  1 MHz");

    tft.setCursor(170, 10);
    tft.setTextColor(ILI9341_WHITE);
    if (radix == 1)
      tft.print("   1 Hz");
    if (radix == 10)
      tft.print("  10 Hz");
    if (radix == 100)
      tft.print(" 100 Hz");
    if (radix == 1000)
      tft.print("  1 kHz");
    if (radix == 10000)
      tft.print(" 10 kHz");
    if (radix == 100000)
      tft.print("100 kHz");
    if (radix == 1000000)
      tft.print("  1 MHz");

    oldradix = radix;
  }
}


void EvenDivisor()
{
  if (freq < 6850000)
  {
    Even_Divisor = 126;
  }
  if ((freq >= 6850000) && (freq < 9500000))
  {
    Even_Divisor = 88;
  }
  if ((freq >= 9500000) && (freq < 13600000))
  {
    Even_Divisor = 64;
  }
  if ((freq >= 13600000) && (freq < 17500000))
  {
    Even_Divisor = 44;
  }
  if ((freq >= 17500000) && (freq < 25000000))
  {
    Even_Divisor = 34;
  }
  if ((freq >= 25000000) && (freq < 36000000))
  {
    Even_Divisor = 24;
  }
  if ((freq >= 36000000) && (freq < 45000000)) {
    Even_Divisor = 18;
  }
  if ((freq >= 45000000) && (freq < 60000000)) {
    Even_Divisor = 14;
  }
  if ((freq >= 60000000) && (freq < 80000000)) {
    Even_Divisor = 10;
  }
  if ((freq >= 80000000) && (freq < 100000000)) {
    Even_Divisor = 8;
  }
  if ((freq >= 100000000) && (freq < 146600000)) {
    Even_Divisor = 6;
  }
  if ((freq >= 150000000) && (freq < 220000000)) {
    Even_Divisor = 4;
  }
}


void SendFrequency()
{
  //freq = freq + 10;
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK0);
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK1);
  si5351.set_phase(SI5351_CLK0, 0);
  si5351.set_phase(SI5351_CLK1, Even_Divisor);
  if (Even_Divisor != oldEven_Divisor)
  {
    si5351.pll_reset(SI5351_PLLA);
    oldEven_Divisor = Even_Divisor;
  }
}


*********************************************************

Transmit Software


// Libraries
#include <Wire.h>                          // I2C comms library
#include <si5351.h>                        // Si5351Jason library
#include <ILI9341_t3.h>
#include <font_Arial.h>                    // Arial font library
#include <Audio.h>                         // Teensy audio library
#include <Metro.h>                         // Metro library

// Define Constants and Variables
// Display
static const int TFT_DC = 20;
static const int TFT_CS = 21;
static const int TFT_RST = 255;             // 255 = unused, connect to 3.3V
static const int TFT_MOSI = 7;
static const int TFT_SCLK = 14;
static const int TFT_MISO = 12;
// Switches, relays
static const int TxRxRelay = 29;
static const int Band80mSwitch = 28;
static const int Band40mSwitch = 27;
static const int Band20mSwitch = 26;
static const int PTTSwitch = 25;
static const int ModeSwitch = 24;
// Audio panel gains
static const int Linein_Gain = 10;         // Range is 0-15. 0 = 3.12 Vp-p, 15 = 0.24 Vp-p. Default = 5
static const int Lineout_Gain = 20;        // Range is 13-31. 13 = 3.16 Vp-p, 31 = 1.16 Vp-p Original was 20
static const int Mic_Gain = 30;            // Range is 0-63dB. Original was 0
// Rotary Encoder
static const int EncoderPushButton = 39;
static const int rotBPin = 36;
static const int rotAPin = 35;
volatile int rotState = 0;
volatile int rotAval = 1;
volatile int rotBval = 1;
volatile int rotAcc = 0;
// Other
static const int NO_HILBERT_COEFFS = 100;         // Used to define the Hilbert transform filter arrays
static const long bandInit = 3690000;             // where to initially set the frequency
static const long band80mStart = 3500000;         // start of 80m
static const long band80mEnd = 3900000;           // end of 80m
static const long band40mStart = 7000000;         // start of 40m
static const long band40mEnd = 7300000;           // end of 40m
static const long band20mStart = 14000000;        // start of 20m
static const long band20mEnd = 14350000;          // end of 20m
volatile long oldfreq = 14123456;
volatile long old80mfreq = 3700000;
volatile long old40mfreq = 7100000;
volatile long old20mfreq = 14100000;
volatile long freq = bandInit ;
volatile long radix = 1000;                // how much to change the frequency. Pushing the rotary encoder switch will change this.
volatile long oldradix = 1000;
volatile int band = 80;                    // 80 = 80m, 40 = 40m, 20 = 20m
volatile int oldband = 0;
volatile int Even_Divisor = 0;
volatile int oldEven_Divisor = 0;
char PTT = 'R';                            // R = receive, T = transmit
volatile int oldPTT = 0;
float raw_sMeter[20] = {0};                // Raw received signal strength
volatile int sMeterBar = 0;                // Received signal strength
volatile int oldsMeterBar = 0;
static const int scale = 60;               // Scale factor for the S Meter
volatile int x = 0;
char mode = 'L';                           // L = LSB, U = USB, C = CQ, A = AM
char oldmode = 'L';
volatile int MHz10, MHz1, kHz100, kHz10, kHz1, Hz100, Hz10, Hz1 = 0;
volatile int oldMHz10, oldMHz1, oldkHz100, oldkHz10, oldkHz1, oldHz100, oldHz10, oldHz1 = 0;

// Iowa Hills Hilbert transform filter coefficients
const short Hilbert_Plus_45_Coeffs[NO_HILBERT_COEFFS] = {
  (short)(32768 * 483.9743406915770E-9),
  (short)(32768 * 1.866685817417670E-6),
  (short)(32768 * 4.392570072495770E-6),
  (short)(32768 * 8.820636712774380E-6),
  (short)(32768 * 0.000016184764415848),
  (short)(32768 * 0.000027249288101724),
  (short)(32768 * 0.000041920439805110),
  (short)(32768 * 0.000059016345361008),
  (short)(32768 * 0.000076756191268614),
  (short)(32768 * 0.000094055071776657),
  (short)(32768 * 0.000112261583662573),
  (short)(32768 * 0.000136518354793722),
  (short)(32768 * 0.000175696544399550),
  (short)(32768 * 0.000240067250940666),
  (short)(32768 * 0.000336609833081347),
  (short)(32768 * 0.000462990951098187),
  (short)(32768 * 0.000602421399161912),
  (short)(32768 * 0.000722301614841713),
  (short)(32768 * 0.000779305755125654),
  (short)(32768 * 0.000732056920489209),
  (short)(32768 * 0.000559948250896998),
  (short)(32768 * 0.000283585816755988),
  (short)(32768 * -0.000020215761694049),
  (short)(32768 * -0.000216819118897174),
  (short)(32768 * -0.000131758715732279),
  (short)(32768 * 0.000409948902196685),
  (short)(32768 * 0.001528130963104050),
  (short)(32768 * 0.003227564604759798),
  (short)(32768 * 0.005351504118228274),
  (short)(32768 * 0.007567804706902511),
  (short)(32768 * 0.009402820162611196),
  (short)(32768 * 0.010328512135999630),
  (short)(32768 * 0.009894246835039863),
  (short)(32768 * 0.007879714166593881),
  (short)(32768 * 0.004433421126740721),
  (short)(32768 * 0.000156366633965185),
  (short)(32768 * -0.003904389468521576),
  (short)(32768 * -0.006371988171406650),
  (short)(32768 * -0.005761887634323113),
  (short)(32768 * -0.000778938771957753),
  (short)(32768 * 0.009365085367419172),
  (short)(32768 * 0.024681757404317366),
  (short)(32768 * 0.044251382160327521),
  (short)(32768 * 0.066233642104189930),
  (short)(32768 * 0.088062621169129954),
  (short)(32768 * 0.106806616459214951),
  (short)(32768 * 0.119635362035632908),
  (short)(32768 * 0.124309482163432433),
  (short)(32768 * 0.119596382589365807),
  (short)(32768 * 0.105526834497225247),
  (short)(32768 * 0.083435851600156402),
  (short)(32768 * 0.055774084237545388),
  (short)(32768 * 0.025722508803868269),
  (short)(32768 * -0.003316774367731974),
  (short)(32768 * -0.028256325810852603),
  (short)(32768 * -0.046784860848984686),
  (short)(32768 * -0.057671422122216751),
  (short)(32768 * -0.060863961385426720),
  (short)(32768 * -0.057377469068775784),
  (short)(32768 * -0.049008885222883866),
  (short)(32768 * -0.037947605693328487),
  (short)(32768 * -0.026365178611104038),
  (short)(32768 * -0.016063741251826878),
  (short)(32768 * -0.008242320709669780),
  (short)(32768 * -0.003409329314875374),
  (short)(32768 * -0.001436295024424050),
  (short)(32768 * -0.001719754923178513),
  (short)(32768 * -0.003400970055132929),
  (short)(32768 * -0.005589187214751837),
  (short)(32768 * -0.007542651980327935),
  (short)(32768 * -0.008778747041127889),
  (short)(32768 * -0.009105231860961261),
  (short)(32768 * -0.008583286966676333),
  (short)(32768 * -0.007445876442758468),
  (short)(32768 * -0.005999873442098177),
  (short)(32768 * -0.004537732597630097),
  (short)(32768 * -0.003276341625911221),
  (short)(32768 * -0.002330120643710241),
  (short)(32768 * -0.001715559019593159),
  (short)(32768 * -0.001377498498508186),
  (short)(32768 * -0.001224659509681699),
  (short)(32768 * -0.001162953813794283),
  (short)(32768 * -0.001118850197066992),
  (short)(32768 * -0.001049829425495061),
  (short)(32768 * -0.000943240226180188),
  (short)(32768 * -0.000807608474652057),
  (short)(32768 * -0.000661296218869203),
  (short)(32768 * -0.000522622836450865),
  (short)(32768 * -0.000403818527830429),
  (short)(32768 * -0.000309261220275339),
  (short)(32768 * -0.000236981246010256),
  (short)(32768 * -0.000181726899678497),
  (short)(32768 * -0.000137960767232952),
  (short)(32768 * -0.000101749677323657),
  (short)(32768 * -0.000071268112804006),
  (short)(32768 * -0.000046246069278189),
  (short)(32768 * -0.000026984224473470),
  (short)(32768 * -0.000013519855860183),
  (short)(32768 * -5.268419079329310E-6),
  (short)(32768 * -1.152120275972750E-6)
};

// Iowa Hills Hilbert transform filter coefficients
const short Hilbert_Minus_45_Coeffs[NO_HILBERT_COEFFS] = {
  (short)(32768 * -1.152120275972720E-6),
  (short)(32768 * -5.268419079329100E-6),
  (short)(32768 * -0.000013519855860182),
  (short)(32768 * -0.000026984224473469),
  (short)(32768 * -0.000046246069278187),
  (short)(32768 * -0.000071268112804004),
  (short)(32768 * -0.000101749677323656),
  (short)(32768 * -0.000137960767232950),
  (short)(32768 * -0.000181726899678496),
  (short)(32768 * -0.000236981246010254),
  (short)(32768 * -0.000309261220275334),
  (short)(32768 * -0.000403818527830420),
  (short)(32768 * -0.000522622836450852),
  (short)(32768 * -0.000661296218869189),
  (short)(32768 * -0.000807608474652046),
  (short)(32768 * -0.000943240226180185),
  (short)(32768 * -0.001049829425495072),
  (short)(32768 * -0.001118850197067017),
  (short)(32768 * -0.001162953813794315),
  (short)(32768 * -0.001224659509681719),
  (short)(32768 * -0.001377498498508169),
  (short)(32768 * -0.001715559019593075),
  (short)(32768 * -0.002330120643710066),
  (short)(32768 * -0.003276341625910951),
  (short)(32768 * -0.004537732597629757),
  (short)(32768 * -0.005999873442097817),
  (short)(32768 * -0.007445876442758181),
  (short)(32768 * -0.008583286966676212),
  (short)(32768 * -0.009105231860961396),
  (short)(32768 * -0.008778747041128323),
  (short)(32768 * -0.007542651980328638),
  (short)(32768 * -0.005589187214752684),
  (short)(32768 * -0.003400970055133710),
  (short)(32768 * -0.001719754923178943),
  (short)(32768 * -0.001436295024423829),
  (short)(32768 * -0.003409329314874256),
  (short)(32768 * -0.008242320709667652),
  (short)(32768 * -0.016063741251823811),
  (short)(32768 * -0.026365178611100354),
  (short)(32768 * -0.037947605693324706),
  (short)(32768 * -0.049008885222880681),
  (short)(32768 * -0.057377469068773987),
  (short)(32768 * -0.060863961385426962),
  (short)(32768 * -0.057671422122219533),
  (short)(32768 * -0.046784860848990188),
  (short)(32768 * -0.028256325810860565),
  (short)(32768 * -0.003316774367741772),
  (short)(32768 * 0.025722508803857579),
  (short)(32768 * 0.055774084237534945),
  (short)(32768 * 0.083435851600147395),
  (short)(32768 * 0.105526834497218600),
  (short)(32768 * 0.119596382589362227),
  (short)(32768 * 0.124309482163432142),
  (short)(32768 * 0.119635362035635753),
  (short)(32768 * 0.106806616459220294),
  (short)(32768 * 0.088062621169136893),
  (short)(32768 * 0.066233642104197507),
  (short)(32768 * 0.044251382160334737),
  (short)(32768 * 0.024681757404323448),
  (short)(32768 * 0.009365085367423625),
  (short)(32768 * -0.000778938771955104),
  (short)(32768 * -0.005761887634322139),
  (short)(32768 * -0.006371988171407000),
  (short)(32768 * -0.003904389468522771),
  (short)(32768 * 0.000156366633963640),
  (short)(32768 * 0.004433421126739255),
  (short)(32768 * 0.007879714166592786),
  (short)(32768 * 0.009894246835039278),
  (short)(32768 * 0.010328512135999562),
  (short)(32768 * 0.009402820162611529),
  (short)(32768 * 0.007567804706903086),
  (short)(32768 * 0.005351504118228925),
  (short)(32768 * 0.003227564604760380),
  (short)(32768 * 0.001528130963104480),
  (short)(32768 * 0.000409948902196933),
  (short)(32768 * -0.000131758715732195),
  (short)(32768 * -0.000216819118897210),
  (short)(32768 * -0.000020215761694147),
  (short)(32768 * 0.000283585816755878),
  (short)(32768 * 0.000559948250896909),
  (short)(32768 * 0.000732056920489157),
  (short)(32768 * 0.000779305755125639),
  (short)(32768 * 0.000722301614841724),
  (short)(32768 * 0.000602421399161936),
  (short)(32768 * 0.000462990951098213),
  (short)(32768 * 0.000336609833081367),
  (short)(32768 * 0.000240067250940678),
  (short)(32768 * 0.000175696544399555),
  (short)(32768 * 0.000136518354793723),
  (short)(32768 * 0.000112261583662573),
  (short)(32768 * 0.000094055071776658),
  (short)(32768 * 0.000076756191268616),
  (short)(32768 * 0.000059016345361010),
  (short)(32768 * 0.000041920439805112),
  (short)(32768 * 0.000027249288101726),
  (short)(32768 * 0.000016184764415849),
  (short)(32768 * 8.820636712774440E-6),
  (short)(32768 * 4.392570072495580E-6),
  (short)(32768 * 1.866685817417500E-6),
  (short)(32768 * 483.9743406915230E-9)
};


// Instantiate the Objects
ILI9341_t3 tft = ILI9341_t3(TFT_CS, TFT_DC, TFT_RST, TFT_MOSI, TFT_SCLK, TFT_MISO);
Si5351 si5351;                                                                // Name for the Si5351 DDS
AudioControlSGTL5000    audioShield;                                          // Name for the Teensy audio CODEC on the audio shield
Metro sMeterMetro = Metro(150);                                               // Name for the sMeter update timer

// Audio shield objects
AudioInputI2S           audioInput;                                           // Name for the input to the audio shield (either line-in or mic)
AudioOutputI2S          audioOutput;                                          // Name for the output of the audio shield (either headphones or line-out)
// Receiver
AudioFilterFIR          RX_Hilbert_Plus_45;                                   // Name for the RX +45 Hilbert transform
AudioFilterFIR          RX_Hilbert_Minus_45;                                  // Name for the RX +45 Hilbert transform
AudioMixer4             RX_Summer;                                            // Name for the RX summer
AudioAnalyzePeak        S_Meter;                                              // Received signal strength
// Transmitter
AudioFilterFIR          TX_Hilbert_Plus_45;                                   // Name for the TX +45 Hilbert transform
AudioFilterFIR          TX_Hilbert_Minus_45;                                  // Name for the TX +45 Hilbert transform
AudioMixer4             TX_I_Sideband_Switch;                                 // Name for the sideband switching summer for the I channel

// Audio shield connections
// Receiver
AudioConnection         patchCord5(audioInput, 0, RX_Hilbert_Plus_45, 0);               // Left channel to Hilbert transform +45
AudioConnection         patchCord10(audioInput, 1, RX_Hilbert_Minus_45, 0);             // Right channel to Hilbert transform -45
AudioConnection         patchCord15(RX_Hilbert_Plus_45, 0, RX_Summer, 0);               // Hilbert transform +45 to receiver summer
AudioConnection         patchCord20(RX_Hilbert_Minus_45, 0, RX_Summer, 1);              // Hilbert transform -45 to receiver summer
AudioConnection         patchCord25(RX_Summer, 0, S_Meter, 0);
AudioConnection         patchCord30(RX_Summer, 0, audioOutput, 0);
AudioConnection         patchCord35(RX_Summer, 0, audioOutput, 1);
// Transmitter
AudioConnection         patchCord40(audioInput, 0, TX_Hilbert_Plus_45, 0);              // Mic audio to Hilbert transform +45
AudioConnection         patchCord45(audioInput, 0, TX_Hilbert_Minus_45, 0);             // Mic audio to Hilbert transform -45
AudioConnection         patchCord50(TX_Hilbert_Plus_45, 0, TX_I_Sideband_Switch, 0);    // In phase channel to sideband switch
AudioConnection         patchCord55(TX_I_Sideband_Switch, 0, audioOutput, 0);           // I to left channel out
AudioConnection         patchCord60(TX_Hilbert_Minus_45, 0, audioOutput, 1);            // Q to right channel out


void setup()
{
  // Setup screen
  tft.begin();
  tft.setRotation(1);
  tft.fillScreen(ILI9341_BLACK);

  // Setup input/output
  pinMode(rotAPin, INPUT);
  pinMode(rotBPin, INPUT);
  pinMode(EncoderPushButton, INPUT);
  pinMode(ModeSwitch, INPUT);
  pinMode(Band80mSwitch, INPUT);
  pinMode(Band40mSwitch, INPUT);
  pinMode(Band20mSwitch, INPUT);
  pinMode(PTTSwitch, INPUT);
  pinMode(TxRxRelay, OUTPUT);

  digitalWrite(rotAPin, HIGH);
  digitalWrite(rotBPin, HIGH);
  digitalWrite(EncoderPushButton, HIGH);
  digitalWrite(ModeSwitch, HIGH);
  digitalWrite(Band80mSwitch, HIGH);
  digitalWrite(Band40mSwitch, HIGH);
  digitalWrite(Band20mSwitch, HIGH);
  digitalWrite(PTTSwitch, HIGH);
  digitalWrite(TxRxRelay, LOW);

  // Setup interrupt pins
  attachInterrupt(digitalPinToInterrupt(rotAPin), ISRrotAChange, CHANGE);
  attachInterrupt(digitalPinToInterrupt(rotBPin), ISRrotBChange, CHANGE);

  // Initialize the DDS
  si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);             // 25MHz crystal = 0, 27MHz crystal = 27000000
  si5351.set_correction(62799, SI5351_PLL_INPUT_XO);      // Set to specific Si5351 calibration number
  si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_6MA);
  si5351.drive_strength(SI5351_CLK1, SI5351_DRIVE_6MA);
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK0);
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK1);
  si5351.set_phase(SI5351_CLK0, 0);
  si5351.set_phase(SI5351_CLK1, Even_Divisor);
  si5351.pll_reset(SI5351_PLLA);

  // Setup the audio shield
  AudioNoInterrupts();
  AudioMemory(12);
  audioShield.enable();
  AudioInterrupts();

  // Setup initial transceiver state
  Receive();
  UpdateMode();
  UpdateDisplay();
  UpdateFreqDisplay();
}


void loop()
{
  // Check to see if the freq has changed
  if (freq != oldfreq)                          // Check to see if the frequency has changed. If so, update everything.
  {
    EvenDivisor();
    UpdateFreqDisplay();
    SendFrequency();
    oldfreq = freq;
  }

  // Check to see if the radix has changed
  if (radix != oldradix)
  {
    UpdateFreqDisplay();
    oldradix = radix;
  }

  // Check the mode switch
  if (digitalRead(ModeSwitch) == LOW)
    mode = 'L';
  else
    mode = 'U';

  // Check to see if the mode has changed
  if (mode != oldmode)                       // Only update the display on mode change
  {
    UpdateMode();
    UpdateDisplay();
    oldmode = mode;
  }

  // Check the band switch
  if (digitalRead(Band80mSwitch) == LOW)
    band = 80;                               // 80m band

  if (digitalRead(Band40mSwitch) == LOW)
    band = 40;                               // 40m band

  if (digitalRead(Band20mSwitch) == LOW)
    band = 20;                               // 20m band

  // Check to see if the band has changed
  if (band != oldband)                       // Only update the display on band change
  {
    UpdateBand();
    UpdateFreqDisplay();
    oldband = band;
  }

  // Check the PTT switch
  if (digitalRead(PTTSwitch) == LOW)
    PTT = 'T';
  else
    PTT = 'R';

  // Check to see if PTT has changed
  if (PTT != oldPTT)
  {
    if (PTT == 'T')
      Transmit();
    if (PTT == 'R')
      Receive();
    UpdateDisplay();
    oldPTT = PTT;
  }

  // Read raw signal strength (running average)
  if (S_Meter.available())
  {
    raw_sMeter[x] = S_Meter.read() * scale;
    x++;
    if (x == 20)
    {
      x = 0;
      float av_raw_sMeter = 0;
      for (int i = 0; i <= 19; i++)
        av_raw_sMeter = av_raw_sMeter + raw_sMeter[i];
      sMeterBar = (av_raw_sMeter / 20) * 250;
    }
  }

  if (sMeterMetro.check() == 1)         // Update sMeter every 250mS
  {
    UpdateSMeter();
    oldsMeterBar = sMeterBar;
  }
}


void Transmit()
{
  AudioNoInterrupts();
  // Turn off the receiver
  audioShield.muteHeadphone();
  RX_Hilbert_Plus_45.end();
  RX_Hilbert_Minus_45.end();

  // Turn on the trasmitter
  audioShield.inputSelect(AUDIO_INPUT_MIC);
  audioShield.micGain(Mic_Gain);
  audioShield.unmuteLineout();                                          // Output to the TX
  audioShield.lineOutLevel(Lineout_Gain);
  TX_Hilbert_Plus_45.begin(Hilbert_Plus_45_Coeffs, NO_HILBERT_COEFFS);
  TX_Hilbert_Minus_45.begin(Hilbert_Minus_45_Coeffs, NO_HILBERT_COEFFS);
  AudioInterrupts();
  digitalWrite(TxRxRelay, HIGH);                                        // Key the transmitter
}


void Receive()
{
  digitalWrite(TxRxRelay, LOW);                                         // Unkey the transmitter
  AudioNoInterrupts();
  // Turn off the transmitter
  audioShield.muteLineout();
  TX_Hilbert_Plus_45.end();
  TX_Hilbert_Minus_45.end();

  // Turn on the receiver
  audioShield.inputSelect(AUDIO_INPUT_LINEIN);
  audioShield.lineInLevel(Linein_Gain);
  audioShield.unmuteHeadphone();                                        // Output to the audio amplifier
  audioShield.volume(0.7);
  RX_Hilbert_Plus_45.begin(Hilbert_Plus_45_Coeffs, NO_HILBERT_COEFFS);
  RX_Hilbert_Minus_45.begin(Hilbert_Minus_45_Coeffs, NO_HILBERT_COEFFS);
  AudioInterrupts();
}


void UpdateMode()
{
  if (mode == 'L')                                // LSB
  {
    RX_Summer.gain(0, 1);
    RX_Summer.gain(1, -1);                        // Invert Q channel
    RX_Summer.gain(2, 0);
    RX_Summer.gain(3, 0);

    TX_I_Sideband_Switch.gain(0, 1);              // No inversion of I channel
    TX_I_Sideband_Switch.gain(1, 0);
    TX_I_Sideband_Switch.gain(2, 0);
    TX_I_Sideband_Switch.gain(3, 0);
  }
  if (mode == 'U')                                // USB
  {
    RX_Summer.gain(0, 1);
    RX_Summer.gain(1, 1);                         // No inversion of Q channel
    RX_Summer.gain(2, 0);
    RX_Summer.gain(3, 0);

    TX_I_Sideband_Switch.gain(0, -1);             // Invert I channel
    TX_I_Sideband_Switch.gain(1, 0);
    TX_I_Sideband_Switch.gain(2, 0);
    TX_I_Sideband_Switch.gain(3, 0);
  }
}


void UpdateBand()
{
  if ((band == 80) && (oldband == 40))
  {
    old40mfreq = freq;
    freq = old80mfreq;
  }

  if ((band == 80) && (oldband == 20))
  {
    old20mfreq = freq;
    freq = old80mfreq;
  }

  if ((band == 40) && (oldband == 80))
  {
    old80mfreq = freq;
    freq = old40mfreq;
  }

  if ((band == 40) && (oldband == 20))
  {
    old20mfreq = freq;
    freq = old40mfreq;
  }

  if ((band == 20) && (oldband == 80))
  {
    old80mfreq = freq;
    freq = old20mfreq;
  }

  if ((band == 20) && (oldband == 40))
  {
    old40mfreq = freq;
    freq = old20mfreq;
  }
}


// Interrupt routines
void ISRrotAChange()
{
  if (digitalRead(rotAPin))
  {
    rotAval = 1;
    UpdateRot();
  }
  else
  {
    rotAval = 0;
    UpdateRot();
  }
}


void ISRrotBChange()
{
  if (digitalRead(rotBPin))
  {
    rotBval = 1;
    UpdateRot();
  }
  else
  {
    rotBval = 0;
    UpdateRot();
  }
}


void UpdateRot()
{
  switch (rotState)
  {

    case 0:                                         // Idle state, look for direction
      if (!rotBval)
        rotState = 1;                               // CW 1
      if (!rotAval)
        rotState = 11;                              // CCW 1
      break;

    case 1:                                         // CW, wait for A low while B is low
      if (!rotBval)
      {
        if (!rotAval)
        {
          // either increment radixindex or freq
          if (digitalRead(EncoderPushButton) == LOW)
          {
            if (radix == 100000)
              radix = 10000;
            else if (radix == 10000)
              radix = 1000;
            else if (radix == 1000)
              radix = 100;
            else if (radix == 100)
              radix = 10;
            else if (radix == 10)
              radix = 1;
            else
              radix = 100000;
          }
          else
          {
            freq = (freq + radix);
            if (band == 80)
              if (freq > band80mEnd)
                freq = band80mEnd;
            if (band == 40)
              if (freq > band40mEnd)
                freq = band40mEnd;
            if (band == 20)
              if (freq > band20mEnd)
                freq = band20mEnd;
          }
          rotState = 2;                             // CW 2
        }
      }
      else if (rotAval)
        rotState = 0;                               // It was just a glitch on B, go back to start
      break;

    case 2:                                         // CW, wait for B high
      if (rotBval)
        rotState = 3;                               // CW 3
      break;

    case 3:                                         // CW, wait for A high
      if (rotAval)
        rotState = 0;                               // back to idle (detent) state
      break;

    case 11:                                        // CCW, wait for B low while A is low
      if (!rotAval)
      {
        if (!rotBval)
        {
          // either decrement radixindex or freq
          if (digitalRead(EncoderPushButton) == LOW)
          {
            if (radix == 1)
              radix = 10;
            else if (radix == 10)
              radix = 100;
            else if (radix == 100)
              radix = 1000;
            else if (radix == 1000)
              radix = 10000;
            else if (radix == 10000)
              radix = 100000;
            else
              radix = 1;
          }
          else
          {
            freq = (freq - radix);
            if (band == 80)
              if (freq < band80mStart)
                freq = band80mStart;
            if (band == 40)
              if (freq < band40mStart)
                freq = band40mStart;
            if (band == 20)
              if (freq < band20mStart)
                freq = band20mStart;
          }
          rotState = 12;                            // CCW 2
        }
      }
      else if (rotBval)
        rotState = 0;                               // It was just a glitch on A, go back to start
      break;

    case 12:                                        // CCW, wait for A high
      if (rotAval)
        rotState = 13;                              // CCW 3
      break;

    case 13:                                        // CCW, wait for B high
      if (rotBval)
        rotState = 0;                               // back to idle (detent) state
      break;
  }
}


void UpdateDisplay()
{
  tft.setFont(Arial_16);
  // RX, TX
  if (PTT == 'R')
  {
    tft.drawRoundRect(0, 0, 60, 40, 5, tft.color565(0, 255, 0));
    tft.setCursor(12, 12);
    tft.setTextColor(tft.color565(0, 255, 0));    // Green
    tft.println("RX");

    tft.drawRoundRect(70, 0, 60, 40, 5, tft.color565(160, 160, 160));
    tft.setCursor(83, 12);
    tft.setTextColor(tft.color565(160, 160, 160));
    tft.println("TX");
  }
  if (PTT == 'T')
  {
    tft.drawRoundRect(0, 0, 60, 40, 5, tft.color565(160, 160, 160));
    tft.setCursor(12, 12);
    tft.setTextColor(tft.color565(160, 160, 160));
    tft.println("RX");

    tft.drawRoundRect(70, 0, 60, 40, 5, tft.color565(255, 0, 0));
    tft.setCursor(83, 12);
    tft.setTextColor(tft.color565(255, 0, 0));    // Red
    tft.println("TX");
  }

  // Tune
  tft.drawRoundRect(140, 0, 80, 40, 5, tft.color565(160, 160, 160));
  tft.setCursor(149, 12);
  tft.setTextColor(tft.color565(160, 160, 160));
  tft.println("TUNE");

  // Mode
  if (mode == 'U')
  {
    tft.drawRoundRect(0, 50, 60, 40, 5, tft.color565(160, 160, 160));
    tft.setCursor(9, 62);
    tft.setTextColor(tft.color565(160, 160, 160));
    tft.println("LSB");

    tft.drawRoundRect(70, 50, 60, 40, 5, tft.color565(255, 255, 0));    // Yellow
    tft.setCursor(79, 62);
    tft.setTextColor(tft.color565(255, 255, 0));
    tft.println("USB");

    tft.drawRoundRect(140, 50, 60, 40, 5, tft.color565(160, 160, 160));
    tft.setCursor(150, 62);
    tft.setTextColor(tft.color565(160, 160, 160));
    tft.println("CW");
  }
  if (mode == 'L')
  {
    tft.drawRoundRect(0, 50, 60, 40, 5, tft.color565(255, 255, 0));    // Yellow
    tft.setCursor(9, 62);
    tft.setTextColor(tft.color565(255, 255, 0));
    tft.println("LSB");

    tft.drawRoundRect(70, 50, 60, 40, 5, tft.color565(160, 160, 160));
    tft.setCursor(79, 62);
    tft.setTextColor(tft.color565(160, 160, 160));
    tft.println("USB");

    tft.drawRoundRect(140, 50, 60, 40, 5, tft.color565(160, 160, 160));
    tft.setCursor(150, 62);
    tft.setTextColor(tft.color565(160, 160, 160));
    tft.println("CW");
  }
  if (mode == 'C')
  {
    tft.drawRoundRect(0, 50, 60, 40, 5, tft.color565(160, 160, 160));
    tft.setCursor(9, 62);
    tft.setTextColor(tft.color565(160, 160, 160));
    tft.println("LSB");

    tft.drawRoundRect(70, 50, 60, 40, 5, tft.color565(160, 160, 160));
    tft.setCursor(79, 62);
    tft.setTextColor(tft.color565(160, 160, 160));
    tft.println("USB");

    tft.drawRoundRect(140, 50, 60, 40, 5, tft.color565(255, 255, 0));    // Yellow
    tft.setCursor(150, 62);
    tft.setTextColor(tft.color565(255, 255, 0));
    tft.println("CW");
  }

  // S Meter
  tft.setFont(Arial_8);
  tft.setTextColor(ILI9341_WHITE);
  tft.setCursor(6, 230);
  tft.println("S1");
  tft.setCursor(38, 230);
  tft.println("3");
  tft.setCursor(68, 230);
  tft.println("5");
  tft.setCursor(98, 230);
  tft.println("7");
  tft.setCursor(128, 230);
  tft.println("9");
  tft.setTextColor(ILI9341_RED);
  tft.setCursor(150, 230);
  tft.println("+20");
  tft.setCursor(180, 230);
  tft.println("+40");
  tft.setCursor(210, 230);
  tft.println("+60");

  tft.drawLine(10, 220, 10, 215, ILI9341_WHITE);
  tft.drawLine(25, 220, 25, 218, ILI9341_WHITE);
  tft.drawLine(40, 220, 40, 215, ILI9341_WHITE);
  tft.drawLine(55, 220, 55, 218, ILI9341_WHITE);
  tft.drawLine(70, 220, 70, 215, ILI9341_WHITE);
  tft.drawLine(85, 220, 85, 218, ILI9341_WHITE);
  tft.drawLine(100, 220, 100, 215, ILI9341_WHITE);
  tft.drawLine(115, 220, 115, 218, ILI9341_WHITE);
  tft.drawLine(130, 220, 130, 215, ILI9341_WHITE);
  tft.drawLine(145, 220, 145, 218, ILI9341_WHITE);
  tft.drawLine(160, 220, 160, 215, ILI9341_RED);
  tft.drawLine(175, 220, 175, 218, ILI9341_RED);
  tft.drawLine(190, 220, 190, 215, ILI9341_RED);
  tft.drawLine(205, 220, 205, 218, ILI9341_RED);
  tft.drawLine(220, 220, 220, 215, ILI9341_RED);
  tft.drawLine(235, 220, 235, 218, ILI9341_RED);

  tft.drawLine(10, 221, 159, 221, ILI9341_WHITE);
  tft.drawLine(160, 221, 235, 221, ILI9341_RED);
}


void UpdateFreqDisplay()
{
  oldMHz10 = (oldfreq % 100000000) / 10000000;
  oldMHz1 = (oldfreq % 10000000) / 1000000;
  oldkHz100 = (oldfreq % 1000000) / 100000;
  oldkHz10 = (oldfreq % 100000) / 10000;
  oldkHz1 = (oldfreq % 10000) / 1000;
  oldHz100 = (oldfreq % 1000) / 100;
  oldHz10 = (oldfreq % 100) / 10;
  oldHz1 = (oldfreq % 10) / 1;

  MHz10 = (freq % 100000000) / 10000000;
  MHz1 = (freq % 10000000) / 1000000;
  kHz100 = (freq % 1000000) / 100000;
  kHz10 = (freq % 100000) / 10000;
  kHz1 = (freq % 10000) / 1000;
  Hz100 = (freq % 1000) / 100;
  Hz10 = (freq % 100) / 10;
  Hz1 = (freq % 10) / 1;

  tft.setFont(Arial_40);

  //10MHz
  if (oldfreq > 10000000)
  {
    if (MHz10 != oldMHz10)
    {
      tft.setCursor(10, 115);
      tft.setTextColor(ILI9341_BLACK);
      tft.println(oldMHz10);
    }
  }
  if (freq > 10000000)
  {
    tft.setCursor(10, 115);
    tft.setTextColor(ILI9341_WHITE);
    tft.println(MHz10);
  }

  //1MHz
  if (MHz1 != oldMHz1)
  {
    tft.setCursor(40, 115);
    tft.setTextColor(ILI9341_BLACK);
    tft.println(oldMHz1);
    tft.setCursor(40, 115);
    tft.setTextColor(ILI9341_WHITE);
    tft.println(MHz1);
  }

  // .
  tft.setTextColor(ILI9341_WHITE);
  tft.setCursor(70, 115);
  tft.println(".");

  //100kHz
  if (kHz100 != oldkHz100)
  {
    tft.setCursor(85, 115);
    tft.setTextColor(ILI9341_BLACK);
    tft.println(oldkHz100);
    tft.setCursor(85, 115);
    tft.setTextColor(ILI9341_WHITE);
    tft.println(kHz100);
  }

  //10kHz
  if (kHz10 != oldkHz10)
  {
    tft.setCursor(115, 115);
    tft.setTextColor(ILI9341_BLACK);
    tft.println(oldkHz10);
    tft.setCursor(115, 115);
    tft.setTextColor(ILI9341_WHITE);
    tft.println(kHz10);
  }

  //1kHz
  if (kHz1 != oldkHz1)
  {
    tft.setCursor(145, 115);
    tft.setTextColor(ILI9341_BLACK);
    tft.println(oldkHz1);
    tft.setCursor(145, 115);
    tft.setTextColor(ILI9341_WHITE);
    tft.println(kHz1);
  }

  // .
  tft.setTextColor(ILI9341_WHITE);
  tft.setCursor(175, 115);
  tft.println(".");

  //100Hz
  if (Hz100 != oldHz100)
  {
    tft.setCursor(190, 115);
    tft.setTextColor(ILI9341_BLACK);
    tft.println(oldHz100);
    tft.setCursor(190, 115);
    tft.setTextColor(ILI9341_WHITE);
    tft.println(Hz100);
  }

  //10Hz
  if (Hz10 != oldHz10)
  {
    tft.setCursor(220, 115);
    tft.setTextColor(ILI9341_BLACK);
    tft.println(oldHz10);
    tft.setCursor(220, 115);
    tft.setTextColor(ILI9341_WHITE);
    tft.println(Hz10);
  }

  //1Hz
  if (Hz1 != oldHz1)
  {
    tft.setCursor(250, 115);
    tft.setTextColor(ILI9341_BLACK);
    tft.println(oldHz1);
    tft.setCursor(250, 115);
    tft.setTextColor(ILI9341_WHITE);
    tft.println(Hz1);
  }

  // Radix line
  if (oldradix == 1)
    tft.fillRect(258, 160, 15, 4, ILI9341_BLACK);
  if (oldradix == 10)
    tft.fillRect(228, 160, 15, 4, ILI9341_BLACK);
  if (oldradix == 100)
    tft.fillRect(198, 160, 15, 4, ILI9341_BLACK);
  if (oldradix == 1000)
    tft.fillRect(153, 160, 15, 4, ILI9341_BLACK);
  if (oldradix == 10000)
    tft.fillRect(123, 160, 15, 4, ILI9341_BLACK);
  if (oldradix == 100000)
    tft.fillRect(93, 160, 15, 4, ILI9341_BLACK);

  if (radix == 1)
    tft.fillRect(258, 160, 15, 4, ILI9341_WHITE);
  if (radix == 10)
    tft.fillRect(228, 160, 15, 4, ILI9341_WHITE);
  if (radix == 100)
    tft.fillRect(198, 160, 15, 4, ILI9341_WHITE);
  if (radix == 1000)
    tft.fillRect(153, 160, 15, 4, ILI9341_WHITE);
  if (radix == 10000)
    tft.fillRect(123, 160, 15, 4, ILI9341_WHITE);
  if (radix == 100000)
    tft.fillRect(93, 160, 15, 4, ILI9341_WHITE);

  oldMHz10 = MHz10;
  oldMHz1 = MHz1;
  oldkHz100 = kHz100;
  oldkHz10 = kHz10;
  oldkHz1 = kHz1;
  oldHz100 = Hz100;
  oldHz10 = Hz10;
  oldHz1 = Hz1;
}

void UpdateSMeter()
{
  tft.fillRect(10, 205, oldsMeterBar, 4, ILI9341_BLACK);
  tft.fillRect(10, 205, sMeterBar, 4, tft.color565(0, 255, 255));
}


void EvenDivisor()
{
  if (freq < 6850000)
    Even_Divisor = 126;

  if ((freq >= 6850000) && (freq < 9500000))
    Even_Divisor = 88;

  if ((freq >= 9500000) && (freq < 13600000))
    Even_Divisor = 64;

  if ((freq >= 13600000) && (freq < 17500000))
    Even_Divisor = 44;

  if ((freq >= 17500000) && (freq < 25000000))
    Even_Divisor = 34;

  if ((freq >= 25000000) && (freq < 36000000))
    Even_Divisor = 24;

  if ((freq >= 36000000) && (freq < 45000000))
    Even_Divisor = 18;

  if ((freq >= 45000000) && (freq < 60000000))
    Even_Divisor = 14;

  if ((freq >= 60000000) && (freq < 80000000))
    Even_Divisor = 10;

  if ((freq >= 80000000) && (freq < 100000000))
    Even_Divisor = 8;

  if ((freq >= 100000000) && (freq < 146600000))
    Even_Divisor = 6;

  if ((freq >= 150000000) && (freq < 220000000))
    Even_Divisor = 4;
}


void SendFrequency()
{
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK0);
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK1);
  si5351.set_phase(SI5351_CLK0, 0);
  si5351.set_phase(SI5351_CLK1, Even_Divisor);
  if (Even_Divisor != oldEven_Divisor)
  {
    si5351.pll_reset(SI5351_PLLA);
    oldEven_Divisor = Even_Divisor;
  }
}


***********************************************************




Thursday 6 June 2019

20m WSPR Beacon


Below is the software. Looks like the formatting has been affected when it was copied over. Auto format in the Arduino IDE works great!

*****************************************************************


#include <DDS.h>
#include <SoftwareSerial.h>

#define RESET 2
#define FQ_UD 3
#define W_CLK 4
#define DATA 5
#define HighPWR_LED 6
#define LowPWR_LED 7
#define TX_LED 8
#define Percent25_LED 9
#define Percent50_LED 10
#define Percent75_LED 11
#define Percent100_LED 12
#define SerialTX 13
#define SerialRX A0
#define Tone0_LED A1
#define Tone1_LED A2
#define Tone2_LED A3
#define Tone3_LED A4

const int GPS_BUFFER_SIZE = 200;                              // The maximum size allowed for an NMEA sentence.
char sentence[GPS_BUFFER_SIZE] = {0};
volatile int _sentenceIndex = 0;
volatile char character = 0;
volatile int SymbolIndex = 0;
volatile int TX = 0;
volatile int Power = 0;
volatile int _UTCMinutes, _UTCSeconds = 0;
volatile long freq = 0;

const byte LowPWR_WSPR_Data[] = {3, 1, 2, 0, 2, 2, 0, 2, 3, 2, 0, 0, 1, 1, 1, 0, 2, 2, 3, 2, 2, 3, 2, 3, 1, 3, 3, 2, 0, 2, 0, 2,
                                 0, 2, 3, 2, 2, 3, 2, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 3, 2, 2, 1, 3, 0, 3, 0, 2, 2, 1, 3, 0, 3, 0,
                                 2, 0, 0, 3, 3, 2, 3, 2, 3, 2, 3, 0, 1, 0, 0, 1, 2, 2, 1, 2, 1, 3, 0, 0, 0, 3, 3, 0, 1, 0, 1, 2,
                                 2, 2, 3, 0, 0, 0, 2, 0, 3, 0, 0, 3, 0, 0, 3, 3, 3, 2, 3, 1, 2, 0, 1, 3, 2, 3, 0, 0, 2, 1, 3, 1,
                                 2, 0, 0, 2, 2, 3, 0, 1, 0, 2, 1, 3, 0, 0, 0, 2, 2, 0, 0, 3, 3, 0, 3, 0, 3, 3, 2, 2, 2, 1, 3, 2,
                                 2, 0
                                };

const byte HighPWR_WSPR_Data[] = {3, 1, 2, 0, 2, 0, 0, 2, 3, 0, 0, 2, 1, 3, 1, 2, 2, 2, 3, 2, 2, 3, 2, 3, 1, 3, 3, 0, 0, 0, 0, 0,
                                  0, 2, 3, 0, 2, 1, 2, 3, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 0, 3, 0, 0, 2, 1, 3, 0, 3, 0,
                                  2, 0, 0, 1, 3, 2, 3, 2, 3, 2, 3, 2, 1, 0, 0, 1, 2, 2, 1, 0, 1, 1, 0, 0, 0, 1, 3, 2, 1, 0, 1, 0,
                                  2, 2, 3, 0, 0, 2, 2, 0, 3, 2, 0, 1, 0, 2, 3, 1, 3, 0, 3, 1, 2, 2, 1, 3, 2, 1, 0, 2, 2, 3, 3, 1,
                                  2, 0, 0, 2, 2, 1, 0, 3, 0, 2, 1, 1, 0, 0, 0, 2, 2, 0, 0, 3, 3, 2, 3, 0, 3, 1, 2, 0, 2, 3, 3, 0,
                                  2, 0
                                 };

// Create the objects
DDS dds(W_CLK, FQ_UD, DATA, RESET);
SoftwareSerial mySerial(SerialRX, SerialTX);

void setup()
{
  // Initialize the AD9850
  dds.init();
  dds.trim(125000000);
  dds.setFrequency(0);

  // Initialize the Software serial port
  mySerial.begin(38400);

  pinMode(HighPWR_LED, OUTPUT);
  pinMode(LowPWR_LED, OUTPUT);
  pinMode(TX_LED, OUTPUT);
  pinMode(Percent25_LED, OUTPUT);
  pinMode(Percent50_LED, OUTPUT);
  pinMode(Percent75_LED, OUTPUT);
  pinMode(Percent100_LED, OUTPUT);
  pinMode(Tone0_LED, OUTPUT);
  pinMode(Tone1_LED, OUTPUT);
  pinMode(Tone2_LED, OUTPUT);
  pinMode(Tone3_LED, OUTPUT);

  digitalWrite(HighPWR_LED, LOW);
  digitalWrite(LowPWR_LED, LOW);
  digitalWrite(TX_LED, LOW);
  digitalWrite(Percent25_LED, LOW);
  digitalWrite(Percent50_LED, LOW);
  digitalWrite(Percent75_LED, LOW);
  digitalWrite(Percent100_LED, LOW);
  digitalWrite(Tone0_LED, LOW);
  digitalWrite(Tone1_LED, LOW);
  digitalWrite(Tone2_LED, LOW);
  digitalWrite(Tone3_LED, LOW);
}


void loop()
{
  if (TX == 0)
  {
    if (mySerial.available())
    {
      character = mySerial.read();                                                    // Get a single character
      sentence[_sentenceIndex] = character;                                           // Append the current character to the sentence
      _sentenceIndex++;

      if (_sentenceIndex == GPS_BUFFER_SIZE)                                          // Check for overrun of the sentence array. If so, restart
        _sentenceIndex = 0;

      if (character == '\r')                                                          // Carriage return. Look for RMC sentence
      {
        _sentenceIndex = 0;                                                           // Reset index counter ready for next timet

        if ((sentence[4] == 'R') && (sentence[5] == 'M') && (sentence[6] == 'C'))
        {
          _UTCSeconds = (10 * (sentence[12] - 48) + (sentence[13] - 48));
          _UTCMinutes = (10 * (sentence[10] - 48) + (sentence[11] - 48));

          if ((_UTCMinutes % 2 == 0) && ((_UTCSeconds == 0) || (_UTCSeconds == 1) || (_UTCSeconds == 2)))
            TX = 1;
        }
      }
    }
  }

  if (TX == 1)
  {
    digitalWrite(TX_LED, HIGH);                                                        // Turn on the TX LED
    freq = random(14097000, 14097200);                                                 // Select a random TX frequency

    if (Power == 0)
      for (SymbolIndex = 0; SymbolIndex <= 161; SymbolIndex++)
      {
        dds.setFrequency(freq + (LowPWR_WSPR_Data[SymbolIndex] * 1.4648));             // Change DDS freq
        ToneLEDs(LowPWR_WSPR_Data[SymbolIndex]);                                       // Update tone LEDs
        ProgressLEDs(SymbolIndex);                                                     // Update progress LEDs
        delay(683);
      }

    if (Power == 1)
      for (SymbolIndex = 0; SymbolIndex <= 161; SymbolIndex++)
      {
        dds.setFrequency(freq + (HighPWR_WSPR_Data[SymbolIndex] * 1.4648));             // Change DDS freq
        ToneLEDs(HighPWR_WSPR_Data[SymbolIndex]);                                       // Update tone LEDs
        ProgressLEDs(SymbolIndex);                                                      // Update progress LEDs
        delay(683);
      }

    dds.setFrequency(0);                                                                // Turn off the DDS
    ToneLEDs(4);                                                                        // Turn off the tone LEDs
    ProgressLEDs(0);                                                                    // Turn off the progress LEDs
    digitalWrite(TX_LED, LOW);                                                          // Turn off the TX LED
    TX = 0;
    Power = !Power;                                                                     // Toggle transmit power
    PowerLEDs(Power);                                                                   // Toggle power level LED
  }
}


void ToneLEDs(int x)
{
  switch (x)
  {
    case 4:
      digitalWrite(Tone0_LED, LOW);
      digitalWrite(Tone1_LED, LOW);
      digitalWrite(Tone2_LED, LOW);
      digitalWrite(Tone3_LED, LOW);
      break;
    case 3:
      digitalWrite(Tone0_LED, LOW);
      digitalWrite(Tone1_LED, LOW);
      digitalWrite(Tone2_LED, LOW);
      digitalWrite(Tone3_LED, HIGH);
      break;
    case 2:
      digitalWrite(Tone0_LED, LOW);
      digitalWrite(Tone1_LED, LOW);
      digitalWrite(Tone2_LED, HIGH);
      digitalWrite(Tone3_LED, LOW);
      break;
    case 1:
      digitalWrite(Tone0_LED, LOW);
      digitalWrite(Tone1_LED, HIGH);
      digitalWrite(Tone2_LED, LOW);
      digitalWrite(Tone3_LED, LOW);
      break;
    case 0:
      digitalWrite(Tone0_LED, HIGH);
      digitalWrite(Tone1_LED, LOW);
      digitalWrite(Tone2_LED, LOW);
      digitalWrite(Tone3_LED, LOW);
      break;
  }
}


void ProgressLEDs(int x)
{
  if (x <= 30)
  {
    digitalWrite(Percent25_LED, LOW);
    digitalWrite(Percent50_LED, LOW);
    digitalWrite(Percent75_LED, LOW);
    digitalWrite(Percent100_LED, LOW);
  }
  if ((x > 30) && (x <= 70))
  {
    digitalWrite(Percent25_LED, LOW);
    digitalWrite(Percent50_LED, LOW);
    digitalWrite(Percent75_LED, LOW);
    digitalWrite(Percent100_LED, HIGH);
  }
  if ((x > 70) && (x <= 110))
  {
    digitalWrite(Percent25_LED, LOW);
    digitalWrite(Percent50_LED, LOW);
    digitalWrite(Percent75_LED, HIGH);
    digitalWrite(Percent100_LED, HIGH);
  }
  if ((x > 110) && (x <= 150))
  {
    digitalWrite(Percent25_LED, LOW);
    digitalWrite(Percent50_LED, HIGH);
    digitalWrite(Percent75_LED, HIGH);
    digitalWrite(Percent100_LED, HIGH);
  }
  if (x > 150)
  {
    digitalWrite(Percent25_LED, HIGH);
    digitalWrite(Percent50_LED, HIGH);
    digitalWrite(Percent75_LED, HIGH);
    digitalWrite(Percent100_LED, HIGH);
  }
}


void PowerLEDs(int x)
{
  switch (x)
  {
    case 0:
      digitalWrite(LowPWR_LED, HIGH);
      digitalWrite(HighPWR_LED, LOW);
      break;
    case 1:
      digitalWrite(LowPWR_LED, LOW);
      digitalWrite(HighPWR_LED, HIGH);
      break;
  }
}
*************************************************************

The link to the GENWSPR file is: http://www.g4jnt.com/JTModesBcns.htm





Saturday 20 April 2019

Portable 20m SSB Rig



See YouTube for video log.







BPF




Ant Amplifier




IF Amp







#include <Wire.h>
#include <SPI.h>
#include <TM1637Display.h>
#include <si5351.h>
#include "LowPower.h"

const uint32_t bandStart = 14000000;    // start of 20m
const uint32_t bandEnd =   14350000;    // end of 20m
const uint32_t bandInit =  14100000;    // where to initially set the frequency
volatile long currentfreq = 0;
volatile long oldfreq = 0;
volatile int currentmode = 0;
volatile int oldmode = 0;

volatile uint32_t freq = bandInit ;     // this is a variable (changes) - set it to the beginning of the band
volatile uint32_t radix = 1000;         // how much to change the frequency by, clicking the rotary encoder will change this.

const uint32_t BFO_freq = 8998450;      // 8998450 = high side injection. For low side injection use 9001350;

// Rotary encoder pins and other inputs
static const int rotBPin = 2;
static const int rotAPin = 3;
static const int pushPin = 4;
static const int PTTInput = 8;
static const int brightnessPin = A3;
static const int tunespeedLED = A2;
static const int gnd = 10;
static const int vcc = 11;
static const int DIO = 12;
static const int CLK = 13;

// Rotary encoder variables, used by interrupt routines
volatile int rotState = 0;
volatile int rotAval = 1;
volatile int rotBval = 1;


volatile long remainder = 0;
volatile long OnesHz = 0;
volatile long TensHz = 0;
volatile long HundredsHz = 0;
volatile long OneskHz = 0;
volatile long TenskHz = 0;
volatile long HundredskHz = 0;
volatile long OnesMHz = 0;
volatile long TensMHz = 0;
volatile int Brightness = 3;
volatile int batterySave = 0;

// Instantiate the Objects
TM1637Display display(CLK, DIO);    // CLK, DIO
Si5351 si5351;

void setup()
{
  // Set up frequency and radix switches
  pinMode(rotAPin, INPUT);
  pinMode(rotBPin, INPUT);
  pinMode(pushPin, INPUT);
  pinMode(brightnessPin, INPUT);
  pinMode(gnd, OUTPUT);
  pinMode(tunespeedLED, OUTPUT);
  pinMode(vcc, OUTPUT);
  pinMode(PTTInput, INPUT);

  // Set up pull-up resistors on inputs
  digitalWrite(rotAPin, HIGH);
  digitalWrite(rotBPin, HIGH);
  digitalWrite(pushPin, HIGH);
  digitalWrite(brightnessPin, HIGH);
  digitalWrite(gnd, LOW);
  digitalWrite(vcc, HIGH);
  digitalWrite(tunespeedLED, LOW);
  digitalWrite(PTTInput, LOW);

  // Set up interrupt pins
  attachInterrupt(digitalPinToInterrupt(rotAPin), ISRrotAChange, CHANGE);
  attachInterrupt(digitalPinToInterrupt(rotBPin), ISRrotBChange, CHANGE);

  // Initialize the display
  display.setBrightness(Brightness, true);
  UpdateDisplay();
  delay(1000);

  // Initialize the DDS
  si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
  si5351.set_correction(87000, SI5351_PLL_INPUT_XO);      // Set to specific Si5351 calibration number
  si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
  si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_2MA);
  si5351.drive_strength(SI5351_CLK2, SI5351_DRIVE_2MA);
  si5351.set_freq((freq * 100ULL), SI5351_CLK0);
  si5351.set_freq((BFO_freq * 100ULL), SI5351_CLK2);
}


void loop()
{
  LowPower.idle(SLEEP_60MS, ADC_OFF, TIMER2_OFF, TIMER1_OFF, TIMER0_ON, SPI_OFF, USART0_OFF, TWI_OFF);

  currentmode = digitalRead(PTTInput);
  if (currentmode != oldmode)
  {
    SendFrequency();
    oldmode = currentmode;
  }


  currentfreq = getfreq();                // Interrupt safe method to get the current frequency
  if (currentfreq != oldfreq)
  {
    UpdateDisplay();
    SendFrequency();
    oldfreq = currentfreq;
  }

  if (digitalRead(brightnessPin) == LOW)
  {
    Brightness--;
    display.setBrightness(Brightness, true);
    if (Brightness == -1)
    {
      display.setBrightness(0, false);
      digitalWrite(tunespeedLED, LOW);
      batterySave = 1;
    }
    if (Brightness == -2)
    {
      Brightness = 3;
      batterySave = 0;
    }
    UpdateDisplay();
    delay(500);
  }

  if ((radix == 100) && (batterySave == 0))
    digitalWrite(tunespeedLED, HIGH);

  if (radix == 1000)
    digitalWrite(tunespeedLED, LOW);
}


void wakeUp()
{
  // Just a handler for the sleep pin interrupt.
}


long getfreq()
{
  long temp_freq;
  cli();
  temp_freq = freq;
  sei();
  return temp_freq;
}


// Interrupt routines
void ISRrotAChange()
{
  if (digitalRead(rotAPin))
  {
    rotAval = 1;
    UpdateRot();
  }
  else
  {
    rotAval = 0;
    UpdateRot();
  }
}


void ISRrotBChange()
{
  if (digitalRead(rotBPin))
  {
    rotBval = 1;
    UpdateRot();
  }
  else
  {
    rotBval = 0;
    UpdateRot();
  }
}


void UpdateRot()
{
  switch (rotState)
  {

    case 0:                                         // Idle state, look for direction
      if (!rotBval)
        rotState = 1;                               // CW 1
      if (!rotAval)
        rotState = 11;                              // CCW 1
      break;

    case 1:                                         // CW, wait for A low while B is low
      if (!rotBval)
      {
        if (!rotAval)
        {
          // either increment radixindex or freq
          if (digitalRead(pushPin) == LOW)
          {
            if (radix == 1000)
              radix = 100;
            else if (radix == 100)
              radix = 1000;
          }
          else
          {
            freq = (freq + radix);
            if (freq > bandEnd)
              freq = bandEnd;
          }
          rotState = 2;                             // CW 2
        }
      }
      else if (rotAval)
        rotState = 0;                             // It was just a glitch on B, go back to start
      break;

    case 2:                                         // CW, wait for B high
      if (rotBval)
        rotState = 3;                               // CW 3
      break;

    case 3:                                         // CW, wait for A high
      if (rotAval)
        rotState = 0;                               // back to idle (detent) state
      break;

    case 11:                                        // CCW, wait for B low while A is low
      if (!rotAval)
      {
        if (!rotBval)
        {
          // either decrement radixindex or freq
          if (digitalRead(pushPin) == LOW)
          {
            if (radix == 100)
              radix = 1000;
            else if (radix == 1000)
              radix = 100;
          }
          else
          {
            freq = (freq - radix);
            if (freq < bandStart)
              freq = bandStart;
          }
          rotState = 12;                            // CCW 2
        }
      }
      else if (rotBval)
        rotState = 0;                             // It was just a glitch on A, go back to start
      break;

    case 12:                                        // CCW, wait for A high
      if (rotAval)
        rotState = 13;                              // CCW 3
      break;

    case 13:                                        // CCW, wait for B high
      if (rotBval)
        rotState = 0;                               // back to idle (detent) state
      break;
  }
}


void UpdateDisplay()
{
  TensMHz = freq / 10000000;                                // TensMHz = 12345678 / 10000000 = 1
  remainder = freq - (TensMHz * 10000000);                  // remainder = 12345678 - 10000000 = 2345678
  OnesMHz = remainder / 1000000;                            // OnesMhz = 2345678 / 1000000 = 2
  remainder = remainder - (OnesMHz * 1000000);              // remainder = 2345678 - (2 * 1000000) = 345678
  HundredskHz = remainder / 100000;                         // HundredskHz = 345678 / 100000 = 3
  remainder = remainder - (HundredskHz * 100000);           // remainder = 345678 - (3 * 100000) = 45678
  TenskHz = remainder / 10000;                              // TenskHz = 45678 / 10000 = 4
  remainder = remainder - (TenskHz * 10000);                // remainder = 45678 - (4 * 10000) = 5678
  OneskHz = remainder / 1000;                               // OneskHz = 5678 / 1000 = 5
  remainder = remainder - (OneskHz * 1000);                 // remainder = 5678 - (5 * 1000) = 678
  HundredsHz = remainder / 100;                             // HundredsHz = 678 / 100 = 6
  remainder = remainder - (HundredsHz * 100);               // remainder = 678 - (6 * 100) = 78
  TensHz = remainder / 10;                                  // TensHz = 78 / 10 = 7
  remainder = remainder - (TensHz * 10);                    // remainder = 78 - (7 * 10) = 8
  OnesHz = remainder;                                       // OnesHz = 8

  display.showNumberDec(((1000 * HundredskHz) + ( 100 * TenskHz) + (10 * OneskHz) + HundredsHz), true);
}


void SendFrequency()
{
  if (currentmode == 1)             // Transmit
  {
    si5351.set_freq(((freq - BFO_freq + 50) * 100ULL), SI5351_CLK2);
    si5351.set_freq((BFO_freq * 100ULL), SI5351_CLK0);
  }
  else                              // Receive
  {
    si5351.set_freq(((freq - BFO_freq + 50) * 100ULL), SI5351_CLK0);
    si5351.set_freq((BFO_freq * 100ULL), SI5351_CLK2);
  }
}

Friday 15 March 2019

Homebrew RF Power Amplifier

RF Power amplifier based on the W6JL amp. The intent is to use readily available parts in the first instant. These may be swapped out depending on how well they perform.

See YouTube for videos. https://www.youtube.com/channel/UCSNPW3_gzuMJcX_ErBZTv2g

The original circuit (minus the biasing RFCs)



My version of the bias network





The final amp has used a BN-43-202 for T1 (8:4) and a BN-43-3312 for T2 (1:3). I also left off the RFCs for the YouTube video. Adding the RFCs would increase the gain a little. 

Friday 8 March 2019

Homebrew Panadapter

Homebrew panadapter using a Teensy 3.5.


Test Code


#include "SPI.h"
#include "ILI9341_t3.h"
#include <si5351.h>                        // Si5351Jason library
#include <Audio.h>

//const int myInput = AUDIO_INPUT_MIC;
const int myInput = AUDIO_INPUT_LINEIN;

uint16_t WaterfallData[100][128] = {1};
int Gain = 50;

static const long bandInit =  9008450;     // 8800000 8565000 to initially set the frequency. Was 9020000
volatile long freq = bandInit ;


// For optimized ILI9341_t3 library
#define TFT_DC    20
#define TFT_CS    21
#define TFT_RST   255  // 255 = unused, connect to 3.3V
#define TFT_MOSI  7
#define TFT_SCLK  14
#define TFT_MISO  12

ILI9341_t3 tft = ILI9341_t3(TFT_CS, TFT_DC, TFT_RST, TFT_MOSI, TFT_SCLK, TFT_MISO);
Si5351 si5351;                            // Name for the Si5351 DDS

// Setup audio shield
AudioInputI2S            audioInput;
AudioMixer4              InputAmp;
AudioAnalyzeFFT256       FFT;

// Setup the audio connections
AudioConnection          patchCord1(audioInput, 0, InputAmp, 0);
AudioConnection          patchCord2(InputAmp, 0, FFT, 0);

// Instantiate the Audio Shield
AudioControlSGTL5000 audioShield;

void setup()
{
  Serial.begin(9600);

  // Setup screen
  tft.begin();
  tft.setRotation(1);
  tft.fillScreen(ILI9341_BLACK);
  tft.drawRect(31, 0, 257, 37, ILI9341_YELLOW);
  tft.drawRect(31, 36, 257, 103, ILI9341_YELLOW);
  tft.drawRect(31, 138, 257, 102, ILI9341_YELLOW);

  // Setup audio shield.
  AudioMemory(12);
  audioShield.enable();
  audioShield.inputSelect(myInput);
  InputAmp.gain(0, Gain);
  FFT.windowFunction(AudioWindowHanning256);
  FFT.averageTogether(30);

  // Setup the DDS
  si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
  si5351.set_pll(SI5351_PLL_FIXED, SI5351_PLLA);
  si5351.drive_strength(SI5351_CLK1, SI5351_DRIVE_8MA);
  si5351.set_freq(freq * 100ULL, SI5351_CLK1);
}


void loop()
{
  if (FFT.available())
    UpdateDisplay();

  if (Serial.available() > 0)
  {
    char c = Serial.read();
    switch (c)
    {
      case 'w': Gain = Gain + 10; break;
      case 's': Gain = Gain - 10; break;
    }
    Serial.println(Gain);
    InputAmp.gain(0, Gain);
  }
}


void UpdateDisplay()
{
  int bar = 0;
  int xPos = 0;
  int low = 0;

  // Spectrum
  for (int x = 0; x <= 127; x++)
  {
    WaterfallData[0][x] = abs(FFT.output[x]);
    bar = WaterfallData[0][x];
    if (bar > 100)
      bar = 100;
    tft.drawFastVLine(32 + (xPos * 2), 138 - bar, bar, ILI9341_GREEN); //draw green bar
    tft.drawFastVLine(32 + (xPos * 2), 38, 100 - bar, ILI9341_BLACK);  //finish off with black to the top of the screen
    xPos++;
  }

  // Waterfall
  for (int row = 99; row >= 0; row--)
    for (int col = 0; col <= 127; col++)
    {
      WaterfallData[row][col] = WaterfallData[row - 1][col];

      if (WaterfallData[row][col] >= low + 75)
        tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_RED);

      else if ((WaterfallData[row][col] >= low + 50) && (WaterfallData[row][col] < low + 75))
        tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_MAGENTA);

      else if ((WaterfallData[row][col] >= low + 30) && (WaterfallData[row][col] < low + 50))
        tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_YELLOW);

      else if ((WaterfallData[row][col] >= low + 20) && (WaterfallData[row][col] < low + 30))
        tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_BLUE);

      else if (WaterfallData[row][col] < low + 20)
        tft.drawPixel(32 + (col * 2), 139 + row, ILI9341_BLACK);
    }
}


void SendFrequency()
{
  si5351.set_freq(freq * 100ULL, SI5351_CLK1);
}

Saturday 26 January 2019

Si5351 Quadrature Clock Output down to 3MHz

Credit to Brian Harper M1CEM and Miguel BartiĆ© PY2OHH


Step 1. Edit si5351.h file. Change the SI5351_PLL_VCO_MIN to 380000000, i.e.,

#define SI5351_PLL_VCO_MIN              380000000


Step 2. Example code snippet:



volatile long freq = 3500000;
volatile int Even_Divisor = 0;
volatile int oldEven_Divisor = 0;




void EvenDivisor()
{
  if (freq < 6850000)
  {
    Even_Divisor = 126;
  }
  if ((freq >= 6850000) && (freq < 9500000))
  {
    Even_Divisor = 88;
  }
  if ((freq >= 9500000) && (freq < 13600000))
  {
    Even_Divisor = 64;
  }
  if ((freq >= 13600000) && (freq < 17500000))
  {
    Even_Divisor = 44;
  }
  if ((freq >= 17500000) && (freq < 25000000))
  {
    Even_Divisor = 34;
  }
  if ((freq >= 25000000) && (freq < 36000000))
  {
    Even_Divisor = 24;
  }
  if ((freq >= 36000000) && (freq < 45000000)) {
    Even_Divisor = 18;
  }
  if ((freq >= 45000000) && (freq < 60000000)) {
    Even_Divisor = 14;
  }
  if ((freq >= 60000000) && (freq < 80000000)) {
    Even_Divisor = 10;
  }
  if ((freq >= 80000000) && (freq < 100000000)) {
    Even_Divisor = 8;
  }
  if ((freq >= 100000000) && (freq < 146600000)) {
    Even_Divisor = 6;
  }
  if ((freq >= 150000000) && (freq < 220000000)) {
    Even_Divisor = 4;
  }
}


void SendFrequency()
{
  EvenDivisor();
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK0);
  si5351.set_freq_manual(freq * SI5351_FREQ_MULT, Even_Divisor * freq * SI5351_FREQ_MULT, SI5351_CLK2);
  si5351.set_phase(SI5351_CLK0, 0);
  si5351.set_phase(SI5351_CLK2, Even_Divisor);
 
if(Even_Divisor != oldEven_Divisor)
  {
    si5351.pll_reset(SI5351_PLLA);
    oldEven_Divisor = Even_Divisor;
  }
}




Monday 14 January 2019

Homebrew Power/SWR Meter

Please see YouTube for details:

https://www.youtube.com/channel/UCSNPW3_gzuMJcX_ErBZTv2g

This is my first idea for a directional coupler. Please note that this is not suppose to be a competition or commercial grade device. My aim is to keep the costs down, but still have a functional power/SWR meter at the end.

Note also the 51 ohm (below) termination resistor is now 150 ohm.


Tandem coupler experiments. This is looking very promising with a wide frequency and power range.










Final Software:

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

volatile float FwdVoltage = 0;
volatile float RevVoltage = 0;
volatile float PWR_Cal = 0;
volatile float SWR_Cal = 0;
volatile float PWR = 0;
volatile float SWR = 0;
volatile float FwdVoltageReadings[10];
volatile float FwdVoltageAverage;
volatile float RevVoltageReadings[10];
volatile float RevVoltageAverage;
volatile int FwdNumberOfLines = 0;
volatile int RevNumberOfLines = 0;
volatile int FwdNumberOfLinesToBlank = 0;
volatile int RevNumberOfLinesToBlank = 0;
volatile int AvCount = 0;

volatile double oldPWR = 0;
volatile double oldSWR = 0;

// Instantiate the Objects
LiquidCrystal_I2C lcd(0x27, 16, 2);

//Custom bar characters
const byte Bar1Array[8] = {B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000};
const byte Bar2Array[8] = {B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000};
const byte Bar3Array[8] = {B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100};
const byte Bar4Array[8] = {B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110};
const byte Bar5Array[8] = {B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111};

void setup()
{
  pinMode(A0, INPUT);                     //Fwd power voltage pin
  pinMode(A1, INPUT);                     //Rev power voltage pin
  pinMode(A2, INPUT);                     //PWR cal pin
  pinMode(A3, INPUT);                     //SWR cal pin

  //analogReference(EXTERNAL);

  Serial.begin(9600);
  // Initialize the display
  lcd.begin();
  lcd.backlight();
  lcd.createChar(1, Bar1Array);           //Special charaters for the PWR and SWR bar display
  lcd.createChar(2, Bar2Array);
  lcd.createChar(3, Bar3Array);
  lcd.createChar(4, Bar4Array);
  lcd.createChar(5, Bar5Array);
  UpdateDisplay();
}


void loop()
{
  FwdVoltage = analogRead(A0);
  RevVoltage = analogRead(A1);
  PWR_Cal = analogRead(A2);
  SWR_Cal = analogRead(A3);

  FwdVoltageReadings[AvCount] = FwdVoltage;             // Put fwd power reading into array
  RevVoltageReadings[AvCount] = RevVoltage;             // Put rev power reading into array
  AvCount++;

  if (AvCount == 9)                                     // 0 to 9 = 10 bins
  {
    FwdVoltageAverage = 0;
    RevVoltageAverage = 0;

    for (int x = 0; x <= 9; x++)
      FwdVoltageAverage = FwdVoltageAverage + FwdVoltageReadings[x];
    FwdVoltageAverage = FwdVoltageAverage / 10;                           // Calc average

    FwdVoltageAverage = FwdVoltageAverage - 136;                          // Subtract noise
    FwdVoltageAverage = abs(FwdVoltageAverage);                           // Make absolute (remove any negative)
    FwdVoltageAverage = FwdVoltageAverage * 5 / 1024;                     // covert into voltage
    FwdVoltageAverage = FwdVoltageAverage + (PWR_Cal * 5 / 1024);         // Cal to scope (no between 0 and 5)

    for (int x = 0; x <= 9; x++)
      RevVoltageAverage = RevVoltageAverage + RevVoltageReadings[x];

    RevVoltageAverage = RevVoltageAverage / 10;                           // Calc average
    RevVoltageAverage = RevVoltageAverage - 166;                          // Subtract noise
    RevVoltageAverage = abs(RevVoltageAverage);                           // Make absolute (remove any negative)
    RevVoltageAverage = RevVoltageAverage * 5 / 1024;                     // covert into voltage

    // Lookup table for forward power
    if (FwdVoltageAverage < 1.855)
      PWR = 0;
    else if ((FwdVoltageAverage >= 1.855) && (FwdVoltageAverage < 1.97))
      PWR = 1;
    else if ((FwdVoltageAverage >= 1.97) && (FwdVoltageAverage < 2.017))
      PWR = 2;
    else if ((FwdVoltageAverage >= 2.017) && (FwdVoltageAverage < 2.051))
      PWR = 3;
    else if ((FwdVoltageAverage >= 2.051) && (FwdVoltageAverage < 2.056))
      PWR = 4;
    else if ((FwdVoltageAverage >= 2.056) && (FwdVoltageAverage < 2.07))
      PWR = 5;
    else if ((FwdVoltageAverage >= 2.07) && (FwdVoltageAverage < 2.085))
      PWR = 6;
    else if ((FwdVoltageAverage >= 2.085) && (FwdVoltageAverage < 2.109))
      PWR = 7;
    else if ((FwdVoltageAverage >= 2.109) && (FwdVoltageAverage < 2.124))
      PWR = 8;
    else if ((FwdVoltageAverage >= 2.124) && (FwdVoltageAverage < 2.134))
      PWR = 9;
    else if ((FwdVoltageAverage >= 2.134) && (FwdVoltageAverage < 2.144))
      PWR = 10;
    else if ((FwdVoltageAverage >= 2.144) && (FwdVoltageAverage < 2.153))
      PWR = 11;
    else if ((FwdVoltageAverage >= 2.153) && (FwdVoltageAverage < 2.163))
      PWR = 12;
    else if ((FwdVoltageAverage >= 2.163) && (FwdVoltageAverage < 2.173))
      PWR = 13;
    else if ((FwdVoltageAverage >= 2.173) && (FwdVoltageAverage < 2.183))
      PWR = 14;
    else if ((FwdVoltageAverage >= 2.183) && (FwdVoltageAverage < 2.192))
      PWR = 15;
    else if ((FwdVoltageAverage >= 2.192) && (FwdVoltageAverage < 2.197))
      PWR = 16;
    else if ((FwdVoltageAverage >= 2.197) && (FwdVoltageAverage < 2.212))
      PWR = 17;
    else if ((FwdVoltageAverage >= 2.212) && (FwdVoltageAverage < 2.217))
      PWR = 18;
    else if ((FwdVoltageAverage >= 2.217) && (FwdVoltageAverage < 2.22))
      PWR = 19;

    // 20 - 24W
    else if ((FwdVoltageAverage >= 2.220) && (FwdVoltageAverage < 2.246))
      PWR = ((FwdVoltageAverage - 2.22) * 5 / .026) + 20;

    // 25 - 29W
    else if ((FwdVoltageAverage >= 2.246) && (FwdVoltageAverage < 2.266))
      PWR = ((FwdVoltageAverage - 2.246) * 5 / .02) + 25;

    // 30 - 34W
    else if ((FwdVoltageAverage >= 2.266) && (FwdVoltageAverage < 2.280))
      PWR = ((FwdVoltageAverage - 2.266) * 5 / .014) + 30;

    // 35 - 39W
    else if ((FwdVoltageAverage >= 2.280) && (FwdVoltageAverage < 2.300))
      PWR = ((FwdVoltageAverage - 2.280) * 5 / .02) + 35;

    // >= 40W
    else if (FwdVoltage >= 2.3)
      PWR = ((FwdVoltageAverage - 2.3) * 60 / .07) + 40;


    if ((PWR > 0) && (PWR < 3))
      FwdNumberOfLines = 1;
    else
      FwdNumberOfLines = PWR / 3.33;                        // Power bar. 100W / 30 segments = 3.33W per segment

    if (PWR == 0)
      SWR = 0;
    else
    {
      SWR = (1 + sqrt(RevVoltageAverage / FwdVoltageAverage)) / (1 - sqrt(RevVoltageAverage / FwdVoltageAverage));
      SWR = SWR / (SWR_Cal * 5 / 1024);                     // Cal to scope (no between 0 and 5)
    }
    RevNumberOfLines = SWR * 5;                             // One segment per SWR increment

    AvCount = 0;
  }

  if ((PWR != oldPWR) || (SWR != oldSWR))                   // Update display if PWR or SWR has changed
  {
    //SendTelemetryData();
    UpdateDisplay();
    oldPWR = PWR;
    oldSWR = SWR;
  }
}


void SendTelemetryData()
{
  Serial.print("Foward Reading Average: ");
  Serial.println(FwdVoltageAverage, 3);
  Serial.print("Reverse Reading Average: ");
  Serial.println(RevVoltageAverage, 3);
  Serial.print("Power to Load: ");
  Serial.println(PWR);
  Serial.print("SWR: ");
  Serial.println(SWR);
  Serial.println("");
}

void UpdateDisplay()
{
  //Display PWR
  lcd.setCursor(0, 0);
  lcd.print("PWR");
  lcd.setCursor(3, 0);
  lcd.print("     ");
  lcd.setCursor(4, 0);
  lcd.print(PWR, 0);

  //Display SWR
  lcd.setCursor(8, 0);
  lcd.print("SWR");
  lcd.setCursor(11, 0);
  lcd.print("     ");
  lcd.setCursor(12, 0);
  lcd.print(SWR, 1);

  //Draw PWR Bar
  FwdNumberOfLinesToBlank = 29 - FwdNumberOfLines;
  lcd.setCursor(0, 1);
  lcd.print("P");
  while (FwdNumberOfLines >= 5)
  {
    lcd.write(5);
    FwdNumberOfLines = FwdNumberOfLines - 5;
  }

  if (FwdNumberOfLines == 1)
    lcd.write(1);
  if (FwdNumberOfLines == 2)
    lcd.write(2);
  if (FwdNumberOfLines == 3)
    lcd.write(3);
  if (FwdNumberOfLines == 4)
    lcd.write(4);

  while (FwdNumberOfLinesToBlank  >= 5)
  {
    lcd.print(" ");
    FwdNumberOfLinesToBlank = FwdNumberOfLinesToBlank - 5;
  }

  // Blank sedment before 'S'
  lcd.setCursor(7, 1);
  lcd.print(" ");

  //Draw SWR Bar
  RevNumberOfLinesToBlank = 29 - RevNumberOfLines;

  lcd.setCursor(8, 1);
  lcd.print("S");
  while (RevNumberOfLines >= 5)
  {
    lcd.write(5);
    RevNumberOfLines = RevNumberOfLines - 5;
  }

  if (RevNumberOfLines == 1)
    lcd.write(1);
  if (RevNumberOfLines == 2)
    lcd.write(2);
  if (RevNumberOfLines == 3)
    lcd.write(3);
  if (RevNumberOfLines == 4)
    lcd.write(4);

  while (RevNumberOfLinesToBlank >= 5)
  {
    lcd.print(" ");
    RevNumberOfLinesToBlank = RevNumberOfLinesToBlank - 5;
  }
}